Combined exposure to atrazine and phoxim exacerbated the alterations of enzyme activity and abnormal gene expression in earthworms (Eisenia fetida).

Environ Toxicol Pharmacol

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multiple pesticides often coexist in soil, potentially leading to interactions among their components, these may detrimentally impact soil organisms. This study assessed the potential risks posed by simultaneous exposure to atrazine (ATR) and phoxim (PHO) on enzyme and transcription levels in earthworms (Eisenia fetida). The results revealed that ATR exhibited higher acute toxicity towards E. fetida compared to PHO, and their combined exposure resulted in a synergistic acute effect. Furthermore, low concentration combined exposure significantly stimulated catalase (CAT), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) activities, which lead to more severe oxidative damage. Elevated expression levels of translationally controlled tumor protein (tctp) and calreticulin (crt) genes were observed in most exposed groups compared to the control. The synergistic effects of ATR and PHO on earthworms observed in this study may pose ecological risks to the soil ecosystem; thus, more attention should be paid to the joint effects of different pesticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2025.104713DOI Listing

Publication Analysis

Top Keywords

combined exposure
12
exposure atrazine
8
earthworms eisenia
8
eisenia fetida
8
atrazine phoxim
4
phoxim exacerbated
4
exacerbated alterations
4
alterations enzyme
4
enzyme activity
4
activity abnormal
4

Similar Publications

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

We built a custom device to subject an antibody fragment A33 Fab to controlled stress conditions that combined pH, temperature, agitation, and LED-based light exposure in polypropylene microplates; to simulate the real-world challenges it may encounter during storage and transportation and to evaluate the key degradation routes in Fab formulations. We also explored the addition of Tween 80 as a surfactant and the impact of plate surface siliconisation. Monomer loss and fragmentation was monitored by size-exclusion chromatography, aggregate formation determined by changes in hydrodynamic radius in DLS, and chemical modifications identified through intact mass analysis by LC-MS, and N-terminal sequencing.

View Article and Find Full Text PDF

A protocol for measuring phenotypical facial disease markers in a mouse model of iatrogenic Cushing's syndrome.

Methods Cell Biol

September 2025

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France. Electronic ad

Cushing's syndrome is caused by chronic exposure to excessive levels of glucocorticoids. It is characterized by significant phenotypic alterations including increased visceral adiposity and fat deposits on the cheeks, leading to a characteristic 'moon face' appearance. Although glucocorticoid therapy is widespread, its associated side effects are of significant clinical concern.

View Article and Find Full Text PDF

Introduction: Multimorbidity contributes significantly to poor population health outcomes while straining healthcare systems. Although some multimorbid patients experience an accelerated health decline (a decline in well-being or functional status that cannot be attributed to the natural ageing-related health deterioration), others can remain stable for years. Identifying risk factors for accelerated health decline in persons with multimorbidity could help prevent complications and reduce unnecessary interventions.

View Article and Find Full Text PDF

Significantly enhanced effects of heavy metals on the toxicity, bioconcentration and biomagnification under combined exposure.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui province, Hefei, 230601, PR China; College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China.

Heavy metal (HM) co-contamination is prevalent in the aquatic ecosystems and often induces complex combined effects such as synergism or antagonism, bioconcentration and biomagnification on the food-chain organisms, which is threatening the survival of living creatures and even to human health. However, the combined effects of HMs under combined exposure on the aquatic food chains still remain poorly understood. Therefore, toxic responses, bioconcentration and biomagnification of four typical HMs, lead (Pb), cadmium (Cd), nickel (Ni) and zinc (Zn), were systematically investigated under different combined exposure conditions.

View Article and Find Full Text PDF