Unveiling PFAS hazard in European surface waters using an interpretable machine-learning model.

Environ Int

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Per- and polyfluoroalkyl substances (PFAS), commonly known as "forever chemicals", are ubiquitous in surface waters and potentially threaten human health and ecosystems. Despite extensive monitoring efforts, PFAS risk in European surface waters remain poorly understood, as performing PFAS analyses in all surface waters is remarkably challenging. This study developed two machine-learning models to generate the first maps depicting the concentration levels and ecological risks of PFAS in continuous surface waters across 44 European countries, at a 2-km spatial resolution. We estimated that nearly eight thousand individuals were affected by surface waters with PFAS concentrations exceeding the European Drinking Water guideline of 100 ng/L. The prediction maps identified surface waters with high ecological risk and PFAS concentration (>100 ng/L), primarily in Germany, the Netherlands, Portugal, Spain, and Finland. Furthermore, we quantified the distance to the nearest PFAS point sources as the most critical factor (14%-19%) influencing the concentrations and ecological risks of PFAS. Importantly, we determined a threshold distance (4.1-4.9 km) from PFAS point sources, below which PFAS hazards in surface waters could be elevated. Our findings advance the understanding of spatial PFAS pollution in European surface waters and provide a guideline threshold to inform targeted regulatory measures aimed at mitigating PFAS hazards.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2025.109504DOI Listing

Publication Analysis

Top Keywords

surface waters
36
european surface
12
pfas
12
surface
9
waters
9
ecological risks
8
risks pfas
8
pfas point
8
point sources
8
pfas hazards
8

Similar Publications

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

Simultaneous sensing and quantification of pharmaceutically active compounds (PhACs) are crucial for protecting the environment and maintaining long-term ecological sustainability. This study focuses on the bio-based synthesis of BiS-ZnO nanocomposites (BiS-ZnO(bio)) using bio-extract for dual-analyte selective and simultaneous electrochemical monitoring of phenylbutazone (PBZ) and sulfamethoxazole (SMZ) in the environmental matrices. BiS-ZnO(bio) exhibited ZnO(bio) nanostructures embedded on BiS(bio) nanorods with an average rod length of 1409.

View Article and Find Full Text PDF

MXene/PANI/SnO electrochemical sensor for the determination of 4-aminophenol.

Mikrochim Acta

September 2025

Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.

An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.

View Article and Find Full Text PDF

Constructing Ni(OH) nanosheets on a nickel foam electrode for efficient electrocatalytic ethanol oxidation.

Dalton Trans

September 2025

Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.

The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.

View Article and Find Full Text PDF

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF