Microbial Disturbances Caused by Pesticide Exposure and Their Predictive Implications for Gestational Diabetes Mellitus.

Environ Sci Technol

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previous studies have suggested that pesticide exposure and gut microbiome alterations are associated with gestational diabetes mellitus (GDM) risk. Understanding the complex interactive effect of these factors on GDM is essential. In a cohort of 852 pregnant women, we assessed pesticide levels in serum and analyzed the gut microbiota using 16S rRNA and shotgun metagenomic sequencing. We explored the interactions between pesticides and gut microbiota, assessed their roles in GDM development, and proposed a predictive model based on identified biomarkers. We identified an environmental risk score (ERS), denoting the pesticide mixture level significantly associated with GDM, with the gut microbiota, particularly involving the branch, playing a crucial mediating role. In addition, we found an interactive effect of pesticide exposure and gut microbiota on GDM risk. Notably, low enrichment combined with high ERS arisen from pesticide levels led to a 10.36-fold increased GDM risk. The identified pesticide and gut microbial biomarkers achieved high predictive accuracy for GDM (AUC: 0.833, 95% CI: 0.748-0.918). Collectively, maternal pesticide exposure may induce disrupted microbiome-dependent glycemic alteration, necessitating future assessment of clinical implications. Potential GDM markers can serve as targets for therapeutic intervention caused by pesticides, leading to prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5c01076DOI Listing

Publication Analysis

Top Keywords

pesticide exposure
16
gut microbiota
16
gdm risk
12
pesticide
8
gestational diabetes
8
diabetes mellitus
8
exposure gut
8
gdm
8
pesticide levels
8
gut
6

Similar Publications

This study evaluated how dietary black seed oil (Nigella sativa L.) against the diazinon waterborne toxicity on Nile tilapia (Oreochromis niloticus), focusing on growth performance, hematological and biochemical parameters as well as oxidative stress markers and histological changes. A 40-day feeding trial was carried out using four experimental groups: Group 1 (control group), Group 2 (N.

View Article and Find Full Text PDF

Assessment of Ambient Air Pollution from Current-Use Pesticides (CUPs) Using Sorbent Impregnated Passive Air Samplers (SIP-PAS) in Bursa: Spatial and Temporal Variations, Source Identification, and Health Risk Evaluation.

Arch Environ Contam Toxicol

September 2025

Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Mahallesi Mimar Sinan Bulvarı Eflak Caddesi No:177, 16310, Yıldırım, Bursa, Turkey.

This study investigates airborne concentrations of six insecticides widely used on crops grown in agricultural, semi-urban, and rural areas of Bursa Province, Türkiye. Sorbent-impregnated passive air samplers (SIP-PASs), consisting of polyurethane foam (PUF) disks impregnated with XAD-2 resin, were deployed at ten strategically selected sites representing diverse agricultural and demographic profiles within the province. Analytes were quantified using gas chromatography-mass spectrometry (GC-MS) for depuration compounds and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for target insecticides.

View Article and Find Full Text PDF

Bridging Planarian Bioassays and AOP-Based Environmental Assessment: Toward Mechanistic Insights into Pollutant-Induced Disruptions.

Environ Res

September 2025

School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Electronic address:

Human activities have introduced a wide range of contaminants into aquatic ecosystems, posing substantial ecological and health risks. Robust bioindicators are essential for accurately predicting these impacts. Since the early 1980s, planarians-freshwater flatworms known for their remarkable regenerative ability and neurologically relevant system-have been used in ecotoxicology, witnessing renewed scientific interest post-2010.

View Article and Find Full Text PDF

Effects of Imidacloprid on Afrotropical Aquatic Ecosystems: A South African Microcosm Study.

Integr Environ Assess Manag

September 2025

Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.

Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.

View Article and Find Full Text PDF

Introduction: The procedural complexity and time-consuming of conventional pesticide residue detection methods in traditional Chinese medicines (TCMs) significantly impeded their application in modern systems. To address this, this study presented an innovative dual-mode sensor driven by Cu/Cu redox-cycling, which achieved efficient signal transduction from enzyme inhibition to optical response for rapid acetylcholinesterase (AChE) activity and organophosphorus pesticide (OP) residue detection.

Methods: The AB-Cu NPs sensor, a dynamic redox-responsive system, was constructed via coordination-driven assembly of Azo-Bodipy 685 (AB 685) and Cu.

View Article and Find Full Text PDF