Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular imprinting is known as a method for synthesizing materials that selectively adsorb specific molecules. The polymers obtained by this method are inexpensive, highly chemically stable, and easy to prepare, but there is a problem that definite and easy detection of the adsorption of target molecules is difficult. We aimed to achieve selective fluorescence detection of proteins by introducing fluorescent molecules into a molecularly imprinted hydrogel (MIH). For fluorescence detection, we used aggregation-induced emission (AIE), which has been attracting attention in recent years. Molecules exhibiting AIE have the characteristic that their fluorescence intensity increases due to factors such as aggregation of molecules or chemical interaction with target molecules. A new AIE monomer was synthesized, and its characteristics were evaluated. The MIHs were prepared with an AIE monomer, functional monomers, poly(ethylene glycol)diacrylate as a crosslinker, and lysozyme as a target protein. The MIHs showed selective adsorption for lysozyme and a specific increase in fluorescent intensity. Even in a protein mixture sample, we achieved optical detection for lysozyme.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5tb00170fDOI Listing

Publication Analysis

Top Keywords

fluorescence detection
12
selective fluorescence
8
detection proteins
8
molecularly imprinted
8
aggregation-induced emission
8
target molecules
8
aie monomer
8
molecules
6
detection
5
proteins molecularly
4

Similar Publications

Recently, metal-organic frameworks (MOFs) have shown high potential in the field of sensing. However, fluorescent-based detection with MOFs in solution needs complex pre-treatments and has stability issues, complicating measurements and handling for sensing applications. Here, an easy-to-handle and low-cost strategy is introduced to convert MOF-based sensing from solution to surface using scanning probe lithography.

View Article and Find Full Text PDF

The unregulated use and improper disposal of active pharmaceutical ingredients (APIs), particularly phenylbutazone (PBZ), are contaminating water resources and posing serious risks to the food chain. PBZ is a nonsteroidal anti-inflammatory drug (NSAID) commonly used for treating pain and fever in animals, and its persistence in the environment due to inadequate waste management has become a cause of concern. To address this, we report the fabrication of benzimidazole-based self-assembled nanomicelles (R2 NMs) for selective detection and removal of PBZ.

View Article and Find Full Text PDF

Multilayered Sandwich Structure Sensor: Confinement-Mediated HO Enrichment Strategy for Ultrasensitive and Long-term Stable Prostate Cancer Biomarker Detection.

Small

September 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of AI-Driven Zero-Carbon Technologies, Key Laboratory of New Low-carbon Green Chemical Technology Education Department of Guangxi Zhuang Autonomous Region, Guangxi University, Nanning, 530004, China.

Sarcosine (Sar), a critical potential biomarker for prostate cancer (PCa), is primarily detected via enzyme cascade reactions involving sarcosine oxidase (SOx) and peroxidase. Nevertheless, the intermediate product hydrogen peroxide (HO) tends to diffuse to the bulk solution phase without entering subsequent reaction, leading to suboptimal detection sensitivity and compromised analytical performance. To tackle this challenge, a multilayered sandwich nanozyme cascade sensor (designated as Cu-MOF/Rf@BDC) is proposed through a confinement-mediated HO enrichment strategy.

View Article and Find Full Text PDF

Optical imaging offers high sensitivity and specificity for noninvasive cancer detection, but conventional techniques suffer from limited probe accumulation, tissue autofluorescence, and poor depth resolution. Afterglow luminescence overcomes autofluorescence by emitting persistent light after excitation, yet its utility in vivo remains hindered by weak tumor enrichment and two-dimensional readouts lacking spatial context. Here, we report luminescent-magnetic nanoparticles (LM-NPs) coencapsulating luminescent trianthracene (TA) molecules and iron oxide cores within the amphiphilic polymer pluronic-F127.

View Article and Find Full Text PDF

An aptasensor-based fluorescent signal amplification strategy for highly sensitive detection of mycotoxins.

Anal Methods

September 2025

Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.

Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins that pose great health threats to humans. Herein, an aptasensor-based fluorescent signal amplification strategy is developed for the detection of AFB1. Initially, the AFB1 aptamers labelled with carboxyfluorescein (FAM) are adsorbed onto graphene oxide (GO), triggering energy transfer.

View Article and Find Full Text PDF