98%
921
2 minutes
20
Due to complex thermodynamic and kinetic mechanism, phase engineering in nanomaterials is often limited by restricted phases and small-scale synthesis, hindering material diversity and scalability. Here, we demonstrate the exploration to unlock the stoichiometry as a degree of freedom for phase engineering in the Pd-Te binary compound. By reducing diffusion rates, we effectively engineer the stoichiometry of the reactants. We visualize the kinetic process, showing the stoichiometry transition from PdTe to PdTe through a sequential multi-step nucleation process. In total, five distinct phases are identified, demonstrating the potential to enhance phase diversity by fine-tuning stoichiometry. By controlling spatially uniform nucleation and halting the phase transition at precise points, we achieve stoichiometry-controllable wafer-scale growth. Notably, four of these phases exhibit superconducting properties. Our findings offer insights into the mechanism of phase transition through stoichiometry engineering, enabling the expansion of the phase library in nanomaterials and advancing scalable applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052965 | PMC |
http://dx.doi.org/10.1038/s41467-025-59429-3 | DOI Listing |
Blood Adv
September 2025
Alfred Health and Monash University, East Melbourne, Australia.
Zanubrutinib is a next-generation covalent Bruton tyrosine kinase (BTK) inhibitor designed to provide complete and sustained BTK occupancy for efficacy across disease-relevant tissues, with fewer off-target adverse events (AEs) than other covalent BTK inhibitors. In the phase 3 ASPEN study (BGB-3111-302), comparable efficacy and a favorable safety profile versus ibrutinib were demonstrated in patients with MYD88-mutated Waldenström macroglobulinemia (WM), leading to approval of zanubrutinib for patients with WM. BGB-3111-LTE1 (LTE1) is a long-term extension study to which eligible patients, including patients from comparator treatment arms, could enroll following participation in various parent studies of zanubrutinib to treat B-cell malignancies.
View Article and Find Full Text PDFKhirurgiia (Mosk)
September 2025
Mogilev Regional Clinical Hospital, Mogilev, Republic of Belarus.
Objective: To evaluate clinical and laboratory effectiveness of ultrasound treatment for purulent wounds.
Material And Methods: The study enrolled 46 patients with purulent wounds divided into the main group (23 patients, ultrasonic treatment) and the control group (23 patients, traditional treatment). We assessed treatment effectiveness considering visual data, quality of granulation tissue, wound defect area and marginal epithelialization, complete blood count and C-reactive protein.
Climacteric
September 2025
Gynecology Discipline, Obstetrics and Gynecology Department, University of São Paulo School of Medicine, São Paulo, Brazil.
Objective: Social media is an increasingly relevant tool for health education, enabling information exchange, promoting autonomy and supporting informed decision-making. This study introduces Menopausando, a predominantly Portuguese-language digital platform designed to support women during menopausal transition and postmenopause.
Method: This cross-sectional study has been carried out in the Gynecology Discipline, São Paulo University, Brazil, since 2019.
Epilepsia
September 2025
Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA.
The rate of sudden unexpected death in epilepsy (SUDEP) is ~1 per 1000 patients each year. Terminal events reportedly involve repeated and prolonged apnea, suggesting a failure to autoresuscitate. To better understand the mechanisms and identify novel therapeutics, standardized tests to screen for autoresuscitation efficacy are needed in preclinical SUDEP.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Chemistry Division, Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States.
Amyloid materials are formed from the aggregation of single proteins, yet contain polymorphisms where bulk properties are defined by a composition of multiple fibril types. Though desirable as a sustainable material, little is known about how various fibril types survive at high temperatures or in nonpolar solvents due to their highly similar molecular and nanoscale features. Here, we demonstrate that in situ two-dimensional infrared spectroscopy (2DIR), when paired with nanoscale microscopy, can determine the transition temperature of amyloid subpopulations without the use of labels.
View Article and Find Full Text PDF