98%
921
2 minutes
20
Transition-metal-free transformations are recognized as green and sustainable methods for constructing carbon-carbon bonds in organic synthesis. This review describes the application of six organic peroxides, including -butyl hydroperoxide (TBHP), di--butyl peroxide (DTBP), -butyl peroxybenzoate (TBPB), benzoyl peroxide (BPO), dialauroyl peroxide (DLP), and diguyl peroxide (DCP), in C-C bond construction, highlighting selected examples and mechanisms of challenging transformations. Each section concludes with a detailed overview of suitable reagents for various coupling reactions and strengths and weaknesses of the reported works. This work aims to inspire further innovations in transition-metal-free oxidative transformations, promoting sustainable and eco-friendly chemical processes and paving the way for new peroxide-based organic synthesis methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044487 | PMC |
http://dx.doi.org/10.1021/acsomega.4c11574 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Department of Chemistry, Korea University, Seoul, 02841, South Korea.
Chemodynamic therapy (CDT), leveraging Fenton reactions to generate hydroxyl radicals (•OH) from intracellular hydrogen peroxide (HO), offers a promising cancer treatment strategy due to its high specificity and low systemic toxicity. However, the targeted delivery of •OH-producing prodrugs using covalent organic frameworks (COFs) remains a significant challenge. Here, we report a mitochondria-targeted COF-based nano prodrug, COF-31@P, designed for enhanced CDT efficacy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.
Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Covalent organic frameworks (COFs) have been emerging as versatile reticular materials due to their tunable structures and functionalities, enabled by precise molecular engineering at the atomic level. While the integration of multiple components into COFs has substantially expanded their structural complexity, the strategic engineering of diverse functionalities within a single framework the random distribution of linkers with varying lengths remains largely unexplored. Here, we report a series of highly crystalline mixed-length multivariate COFs synthesized using azobenzene and bipyridine as linkers, where tuning the ratio of linkers and incorporating palladium effectively modulates the balance between near-infrared (NIR) light absorption and catalytic sites for NIR-generation of hydrogen peroxide (HO).
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata - 700106, India.
To highlight the critical role of donor-type functional group in COF photocatalysts for sustainable HO production under natural air and without sacrificial donors, herein, we demonstrated that methoxy-functionalised COFs (TTT-DMTA) outperform hydroxy-functionalised counterparts (TTT-DHTA) for HO production.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, P.R. China.
Despite growing interest in single-atom catalysts (SACs) for Fenton-like reactions, zinc (Zn)-based SACs remain unexplored due to the inherent inertness of Zn, whose fully occupied 3d electronic configuration limits redox activity. Here, we overcome this limitation by introducing boron (B) atoms to reconfigure the electronic structure of Zn-N coordination sites, yielding an activated catalyst denoted as Zn-NBC. This electronic modulation transforms inert Zn-N sites into catalytically active centers (Zn-NB ), enabling significantly enhanced Fenton-like activity.
View Article and Find Full Text PDF