Publications by authors named "Alireza Foroumadi"

Ischemic stroke remains a major global cause of mortality. Reperfusion therapy with thrombolysis paradoxically raises reactive oxygen species (ROS) and causes cerebral ischemia-reperfusion injury (CIRI). To address this challenge, antioxidants, which directly neutralize ROS or indirectly activate the KEAP1/Nrf2/ARE pathway, have emerged as promising strategies.

View Article and Find Full Text PDF

A novel quinazoline-containing 1,2,3-triazole (4-TCPA) was synthesized to target VEGFR2 signaling for cancer treatment. Although current VEGFR2 inhibitors exhibit strong anticancer activity, their clinical use is limited due to severe side effects. Structural analysis of effective VEGFR2 inhibitors guided the design of 4-TCPA, ensuring the retention of Erlotinib's essential pharmacophoric features for optimal receptor binding.

View Article and Find Full Text PDF

α-Glucosidase is a key enzyme responsible for controlling the blood glucose, making a pivotal target in the treatment of type 2 diabetes mellitus. Present work introducestriazolo[1,5-a]pyridine as a novel, potent scaffold for α-glucosidase inhibition. A diverse scope of targeted compounds was prepared through an efficient, straightforward synthetic protocol.

View Article and Find Full Text PDF

Transition-metal-free transformations are recognized as green and sustainable methods for constructing carbon-carbon bonds in organic synthesis. This review describes the application of six organic peroxides, including -butyl hydroperoxide (TBHP), di--butyl peroxide (DTBP), -butyl peroxybenzoate (TBPB), benzoyl peroxide (BPO), dialauroyl peroxide (DLP), and diguyl peroxide (DCP), in C-C bond construction, highlighting selected examples and mechanisms of challenging transformations. Each section concludes with a detailed overview of suitable reagents for various coupling reactions and strengths and weaknesses of the reported works.

View Article and Find Full Text PDF

We aimed to investigate whether psilocin, the bioactive metabolite of the well-known psychedelic, psilocybin, may have antipruritic effects in mice by interfering with the kynurenine pathway and interacting with 5-HT2A receptors. Eight mice were randomly assigned to each of the study groups receiving either normal saline, compound 48/80, psilocin (0.3, 1, and 3 mg/kg), or psilocin (1 mg/kg) + 1-MT (0.

View Article and Find Full Text PDF

Epilepsy, a chronic neurological disorder affecting around 65 million people globally, is characterized by recurrent, unprovoked epileptic seizures. Psilocin, the active metabolite of psilocybin, a well-known psychedelic compound, has recently gained attention for its potential antidepressant and anxiolytic properties. This study aims to investigate the anticonvulsant effects of psilocin.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is becoming a fast-growing public health problem which can result in psychological problems as well as loss of speech, language, short-term memory, and motor coordination. Many medications were developed and produced to treat AD, however due to the complexity of the pathology involved in the illness, many of these medications often failed in clinical or preclinical studies. The main issue with the current anti-AD medications is their low efficacy since they use a single target.

View Article and Find Full Text PDF

α-Glucosidase inhibitors are important in the treatment of type 2 diabetes by regulating blood glucose levels and reducing carbohydrate absorption. The present study focuses on identifying new inhibitors bearing imidazo[1,2-c]quinazoline backbone through multi-step synthesis. The inhibitory potencies of the novel derivatives were tested against Saccharomyces cerevisiae α-glucosidase, revealing IC values ranging from 50.

View Article and Find Full Text PDF

Given the significant prevalence of FLT3 receptor and its mutations in acute myeloid leukemia (AML) pathogenesis, we present a novel series of furo[2,3-d]pyrimidin-1,3,4-thiadiazole-urea derivatives, designed to exhibit FLT3-ITD inhibitory activity. These compounds demonstrated cytotoxicity in FLT3-ITD expressing AML cell lines MOLM-13 and MV4-11 in the nanomolar range, with significant selectivity over the K562 cell line. In-depth evaluations of example compound 49 revealed its efficacy in suppressing FLT3 phosphorylation and the downstream signaling molecules, including STAT5 and ERK1/2.

View Article and Find Full Text PDF

The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug.

View Article and Find Full Text PDF

In diabetes mellitus, amylase and glucosidase enzymes are the primary triggers. The main function of these enzymes is to break macromolecules into simple sugar units, which directly affect blood sugar levels by increasing blood permeability. To overcome this metabolic effect, there is a need for a potent and effective inhibitor capable of suppressing the enzymatic conversion of sugar macromolecules into their smaller units.

View Article and Find Full Text PDF

Background: Nineteen non-antibacterials were examined to show that their consumption for treatment of other diseases may inhibit . Four antibiotics were used for comparison.

Materials And Methods: Agar dilution method was used to examine the susceptibility of 20  isolates to 4 antibiotics; metronidazole (MTZ), clarithromycin (CLR), amoxicillin (AMX), tetracycline (TET) and 19 non-antibacterials; proton pump inhibitors (PPIs), H-blockers, bismuth subsalicylate (BSS), antifungals, statins, acetaminophen (ACE), aspirin (ASA), B-vitamins (B-Vits; Vit B1, Vit B6 and Vit B and vitamin C (Vit C).

View Article and Find Full Text PDF
Article Synopsis
  • Many cancers are linked to the MET receptor, making it a key target for cancer drug development.
  • Researchers discovered new chalcone-based compounds that effectively inhibit the c-Met receptor, with some showing similar potency to the established drug Foretinib.
  • Although the new compounds showed some cytotoxicity in HeLa cells, their effects didn't stem from tubulin inhibition, and they demonstrated strong inhibition of MET kinase activity in lab studies.
View Article and Find Full Text PDF

Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations.

View Article and Find Full Text PDF

A novel series of 1-(5-((6-nitroquinazoline-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-phenylurea derivatives 8 were designed and synthesized to evaluate their cytotoxic potencies. The structures of these obtained compounds were thoroughly characterized by IR, H, and C NMR, MASS spectroscopy and elemental analysis methods. Additionally, their in vitro anticancer activities were investigated using the MTT assay against A549 (human lung cancer), MDA-MB231 (human triple-negative breast cancer), and MCF7 (human hormone-dependent breast cancer).

View Article and Find Full Text PDF

In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-:2',1'-]pyrazine-2,3-dicarboxylates (-), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-]pyridazine-8(9)-ones (-). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay.

View Article and Find Full Text PDF

α-Glucosidase inhibition is an approved treatment for type 2 diabetes mellitus (T2DM). In an attempt to develop novel anti-α-glucosidase agents, two series of substituted imidazo[1,2-c]quinazolines, namely 6a-c and 11a-o, were synthesized using a simple, straightforward synthetic routes. These compounds were thoroughly characterized by IR, H and C NMR spectroscopy, as well as mass spectrometry and elemental analysis.

View Article and Find Full Text PDF

Considering the fundamental role of protein kinases in the mechanism of protein phosphorylation in critical cellular processes, their dysregulation, especially in cancers, has underscored their therapeutic relevance. Imidazopyridines represent versatile scaffolds found in abundant bioactive compounds. Given their structural features, imidazopyridines have possessed pivotal potency to interact with different protein kinases, inspiring researchers to carry out numerous structural variations.

View Article and Find Full Text PDF

This study introduces a simple method for preparing a new generation of MnO nanomaterials (MNMs) using tannic acid as a template. Two shapes of MnO NMs, flower-like M1-MnO and near-spherical M2-MnO, were prepared and compared as dual-active nanozymes and contrast agents in magnetic resonance imaging (MRI). Various parameters, including the crystallinity, morphology, magnetic saturation (M), surface functionality, surface area, and porosity of the MNMs were investigated.

View Article and Find Full Text PDF

Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years.

View Article and Find Full Text PDF

Bacterial resistance to fluoroquinolone has been increasing at an alarming rate worldwide. In an attempt to find more potent anti-bacterial agents, an efficient, straightforward protocol was performed to obtain a large substrate scope of novel ciprofloxacin and sarafloxacin analogues conjugated with 4-(arylcarbamoyl)benzyl 7a-ab. All prepared compounds were evaluated for their anti-bacterial activities against three gram-positive strains (Methicillin resistant staphylococcus aureus (MRSA), Staphylococcus aureus, and Enterococcus faecalis) as well as three gram-negative strains (Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli) through three standard methods including broth microdilution, agar-disc diffusion, and agar-well diffusion assays.

View Article and Find Full Text PDF

In this work, a novel series of pyridazine-triazole hybrid molecules were prepared and evaluated as inhibitors of rat intestinal α-glucosidase enzyme. Amongst all newly synthesized compounds, 10k showed good inhibition in the series with IC value of 1.7 µM which is 100 folds stronger than positive control, acarbose.

View Article and Find Full Text PDF

A practical technique was applied to fabricate CuO nanostructures for use as the electrocatalyst. The green synthesis of cupric oxide nanoparticles (CuO NPs) via co-precipitation is described in this paper using an aqueous extract of Origanum majorana as both reductant and stabilizer, accompanied by characterization via XRD, SEM, and FTIR. The XRD pattern revealed no impurities, whereas SEM revealed low agglomerated spherical particles.

View Article and Find Full Text PDF

Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C.

View Article and Find Full Text PDF