Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C., Eastern Europe, and Central Asia. Mitochondrial dysfunction plays an essential role in NPS-induced cognitive impairment. Meanwhile, no investigations have been conducted regarding the α-PVP impact on spatial learning/memory and associated mechanisms. Consequently, our study investigated the α-PVP effect on spatial learning/memory and brain mitochondrial function. Wistar rats received different α-PVP doses (5, 10, and 20 mg/kg) intraperitoneally for 10 sequential days; 24 h after the last dose, spatial learning/memory was evaluated by the Morris Water Maze (MWM). Furthermore, brain mitochondrial protein yield and mitochondrial function variables (Mitochondrial swelling, succinate dehydrogenase (SDH) activity, lipid peroxidation, Mitochondrial Membrane Potential (MMP), Reactive oxygen species (ROS) level, brain ADP/ATP proportion, cytochrome c release, Mitochondrial Outer Membrane (MOM) damage) were examined. α-PVP higher dose (20 mg/kg) significantly impaired spatial learning/memory, mitochondrial protein yield, and brain mitochondrial function (caused reduced SDH activity, increased mitochondrial swelling, elevated ROS generation, increased lipid peroxidation, collapsed MMP, increased cytochrome c release, elevated brain ADP/ATP proportion, and MOM damage). Moreover, the lower dose of α-PVP (5 mg/kg) did not alter spatial learning/memory and brain mitochondrial function. These findings provide the first evidence regarding impaired spatial learning/memory following repeated administration of α-PVP and the possible role of brain mitochondrial dysfunction in these cognitive impairments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2023.116497DOI Listing

Publication Analysis

Top Keywords

brain mitochondrial
24
spatial learning/memory
24
mitochondrial function
16
mitochondrial
13
mitochondrial dysfunction
12
α-pvp
8
brain
8
nps-induced cognitive
8
learning/memory brain
8
mitochondrial protein
8

Similar Publications

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.

View Article and Find Full Text PDF

RNA in plasma extracellular vesicles of adolescent rhesus macaques reveal immune, bioenergetic and microbial imprints of early life adversity - an exploratory analysis.

Biol Psychiatry

September 2025

Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA; Child and Brain Development Program, Canadian Institute for Advanced Research, Toronto, Canada; Division of Endocrinology, Children's Hospital LA, Los Angeles, CA; Department of Pediatrics, Keck Scho

Background: Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of psychosomatic disorders in adolescence and adulthood. Most investigations into biological processes that have been perturbed by ELA have profiled DNA methylation in whole blood and coalesced around perturbations of immunobiology being centrally insulted by ELA.

Methods: To identify novel molecular signatures that are enduringly perturbed by childhood maltreatment, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT, n = 7, 4M 3F) or maltreatment in infancy (MALT, n = 6, 3M 3F).

View Article and Find Full Text PDF

Gut microbiome and mitochondrial crosstalk in Schizophrenia, a mental disability: Emerging mechanisms and therapeutic targets.

Neurosci Biobehav Rev

September 2025

Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India. Electronic address:

Gut-mitochondria is an emerging paradigm in understanding the pathophysiology of complex neuropsychiatric disorders such as Schizophrenia (SCZ). This bidirectional communication network connects the gastrointestinal microbiota with mitochondrial function and brain health, offering novel insights into disease onset and progression. SCZ, characterized by hallucinations, delusions, cognitive impairments, and social withdrawal, has traditionally been attributed to genetic and neurochemical imbalances.

View Article and Find Full Text PDF

Tubulin hyperacetylation drives HMGB1 nuclear exit via the ROS-PARP1 axis leading to rotenone-induced G2/M Arrest.

J Biol Chem

September 2025

Institute of Health Sciences, Presidency University, Canal Bank Rd, DG Block, Action Area 1D, New Town, Kolkata-700156, West Bengal, India, Tel: +91 8017086495. Electronic address:

Rotenone, a lipophilic pesticide, is strongly linked to dopaminergic neuronal loss primarily through mitochondrial complex I inhibition. Beyond its well-characterized neurotoxic effects, rotenone also triggers G2/M arrest in cells, but the molecular mechanisms linking this cell cycle perturbation to neurodegeneration remain unclear. Here, we identify HMGB1 as a key player in this process.

View Article and Find Full Text PDF