MoSec13 combined with MoGcn5b modulates MoAtg8 acetylation and regulates autophagy in .

Autophagy

State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macroautophagy/autophagy is an evolutionarily conserved cellular degradation process that is crucial for cellular homeostasis in . However, the precise regulatory mechanisms governing autophagy in this organism remain unclear. In this study, we found a multiregional localization of MoSec13 to the vesicle membrane, endoplasmic reticulum, nucleus, and perinucleus. MoSec13 negatively regulated autophagy through specific amino acid residues in its own WD40 structural domain by interacting with MoAtg7 and MoAtg8. We also found that the histone acetyltransferase MoGcn5b mediated the acetylation of MoAtg8 and regulated autophagy activity. Subsequently, we further determined that MoSec13 regulated the acetylation status of MoAtg8 by controlling the interaction between MoGcn5b and MoAtg8 in the nucleus. In addition, MoSec13 maintained lipid homeostasis by controlling TORC2 activity. This multilayered integration establishes MoSec13 as an essential node within the autophagic regulatory network. Our findings fill a critical gap in understanding the role of Sec13 in autophagy of filamentous fungi and provide a molecular foundation for developing new therapeutic strategies against rice blast fungus. BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CM: complete medium; CMAC: 7-amino-4-chloromethylcoumarin; Co-IP: co-immunoprecipitation; COPII: coat complex II; GFP: green fluorescent protein; HPH: hygromycin phosphotransferase; MM-N: nitrogen-starvation conditions; NPC: nuclear pore complex; PAS: phagophore assembly site; PE: phosphatidylethanolamine; UPR: unfolded protein response.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2025.2499289DOI Listing

Publication Analysis

Top Keywords

regulated autophagy
8
mosec13
6
moatg8
5
autophagy
5
mosec13 combined
4
combined mogcn5b
4
mogcn5b modulates
4
modulates moatg8
4
moatg8 acetylation
4
acetylation regulates
4

Similar Publications

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

A Viral RNA Silencing Suppressor Modulates Reactive Oxygen Species Levels to Induce the Autophagic Degradation of Dicer-Like and Argonaute-Like Proteins.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.

Mounting evidence indicates that viruses exploit elevated reactive oxygen species (ROS) levels to promote replication and pathogenesis, yet the mechanistic underpinnings of this viral strategy remain elusive for many viral systems. This study uncovers a sophisticated viral counter-defense mechanism in the Cryphonectria hypovirus 1 (CHV1)-Fusarium graminearum system, where the viral p29 protein subverts host redox homeostasis to overcome antiviral responses. That p29 directly interacts with and inhibits the enzymatic activity of fungal NAD(P)H-dependent FMN reductase 1 (FMR1), leading to increased ROS accumulation and subsequent autophagy activation is demonstrated.

View Article and Find Full Text PDF

Hypoxia promotes pancreatic adenocarcinoma progression by stabilizing ID1 via TRIM21 suppression.

Front Oncol

August 2025

Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.

Introduction: Pancreatic adenocarcinoma (PAAD) is a highly aggressive malignancy characterized by a profoundly hypoxic tumor microenvironment, which fosters tumor progression and confers resistance to therapy The oncogenic regulator ID1has been implicated in PAAD malignancy, however, the mechanisms underlying hypoxia-induced stabilization of ID1 and the role of ubiquitin-mediated degradation remain poorly understood. Elucidating these pathways is essential for identifying novel therapeutic targets for PAAD.

Methods: In this study, we examined ID1 expression in PAAD tissues and cell lines using publicly available databases and in vitro models.

View Article and Find Full Text PDF

Regulation of angiogenesis and cancer cell proliferation by human vault RNA1-2.

NAR Cancer

September 2025

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.

Noncoding RNAs play pivotal roles in tumorigenesis and cancer progression. Recent evidence has identified vault RNAs (vtRNAs) as critical regulators of cellular homeostasis. The human genome encodes four vtRNA paralogs, which are differentially expressed in cancer tissues and contribute to tumor development.

View Article and Find Full Text PDF