Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The CRISPR-Cas system is an adaptive immune system in prokaryotes that provides protection against bacteriophages. As a countermeasure, bacteriophages have evolved various anti-CRISPR proteins that neutralize CRISPR-Cas immunity. Here, we report the structural and functional investigation of AcrIE7, which inhibits the type I-E CRISPR-Cas system in Pseudomonas aeruginosa. We determined both crystal and solution structures of AcrIE7, which revealed a novel helical fold. In binding assays using various biochemical methods, AcrIE7 did not tightly interact with a single Cas component in the type I-E Cascade complex or the CRISPR adaptation machinery. In contrast, AlphaFold modeling with our experimentally determined AcrIE7 structure predicted that AcrIE7 interacts with Cas3 in the type I-E CRISPR-Cas system in P. aeruginosa. Our findings are consistent with a model where AcrIE7 inhibits Cas3 and also highlight the effectiveness and limitations of AlphaFold modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.26832DOI Listing

Publication Analysis

Top Keywords

crispr-cas system
12
type i-e
12
acrie7 inhibits
8
i-e crispr-cas
8
alphafold modeling
8
acrie7
7
structural investigation
4
investigation anti-crispr
4
anti-crispr protein
4
protein acrie7
4

Similar Publications

is a commensal bacterium that colonizes the gut of humans and animals and is a major opportunistic pathogen, known for causing multidrug-resistant healthcare-associated infections (HAIs). Its ability to thrive in diverse environments and disseminate antimicrobial resistance genes (ARGs) across ecological niches highlights the importance of understanding its ecological, evolutionary, and epidemiological dynamics. The CRISPR2 locus has been used as a valuable marker for assessing clonality and phylogenetic relationships in .

View Article and Find Full Text PDF

Snapshot of Defense Systems in Multidrug Resistant .

MicroPubl Biol

August 2025

West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG54, Legon, Accra, Ghana.

Bacterial defense mechanisms protect pathogens from host immunity, bacteriophages, and harsh environments. This study investigates defense systems in multidrug-resistant from Ghanaian hospital ICUs, focusing on CRISPR-Cas, restriction-modification (R-M), and toxin-antitoxin (TA) systems. Genomes of environmental (NS2) and clinical (PS4) strains were sequenced and analyzed using PADLOC, defensefinder, and TADB3.

View Article and Find Full Text PDF

Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.

View Article and Find Full Text PDF

Integrated CRISPR-Cas12a and RAA one-pot visual strategy for the rapid identification of subspecies .

Front Cell Infect Microbiol

September 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Strangles, a highly contagious disease caused by subspecies (), significantly impacts horse populations worldwide, with Iceland as the only exception. This disease poses serious threats to equine health and results in considerable economic losses. Consequently, the accurate, sensitive, and rapid detection of from clinical samples is essential for early warning and effective disease management.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF