Soil organic carbon and ecosystem multifunctionality are enhanced by subsoiling in fluvo-aquic soil of North China Plain.

Front Plant Sci

Key Laboratory of Arable Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Henan Agricultural University, Zhengzhou, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigated the impact of various tillage modes on soil carbon (C) components, crop yield, enzyme activity, and ecosystem multifunctionality (EMF) in the North China Plain (NCP), aiming to determine the most effective tillage practice for C sequestration in the region. Field experiments were conducted from 2016 using a split-plot design that included rotary tillage (RT) and deep tillage (DT) during the wheat season and no-tillage (NT), subsoiling in-row (SIR), and subsoiling inter-row (SBR) during the maize season. Related tillage modes based on the total amount of straw returned. Soil bulk density (BD), soil C components, soil organic carbon (SOC) storage, enzyme activities, soil quality index (SQI), EMF, and wheat yield were measured and analyzed. Compared to rotary tillage-no-tillage (RT-NT), the BD of the 0-40 cm soil layer decreased under the other treatments during 2018-2019. The C component content decreased with soil depth across all treatments. Treatments incorporating subsoiling during the maize season led to higher SOC, labile organic carbon (LOC), non-LOC, and microbial biomass carbon (MBC) in the 20-40 cm soil layer. DT-SBR and DT-SIR increased SOC storage. Enzyme activities were highest in the 0-20 cm soil layer under RT-SBR and RT-SIR, while in the 20-40 cm soil layer, enzyme activity peaked under DT-SBR and DT-SIR. The highest SQI value in the 0-20 cm layer was observed under RT-SBR and RT-SIR in both years. Meanwhile, the highest EMF values were under DT-SIR and DT-SBR in the 30-40 cm layer in 2018, ranged from -0.79 to -0.08. Key factors influencing EMF included MBC, LOC, SOC, and dissolved organic carbon (DOC), with EMF showing a strong positive correlation with SQI. Subsoiling during the maize season enhanced wheat yield, with the highest values for RT and DT being 6697 and 6587 kg ha, respectively. In conclusion, DT during the wheat season and subsoiling during the maize season promoted the transformation of SOC, enhanced yield, enzyme activity, SQI, and EMF. These benefits contributed to greater C sequestration in deeper soil layers, offering a sustainable approach to soil management in the fluvo-aquic soils of the NPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040894PMC
http://dx.doi.org/10.3389/fpls.2025.1559653DOI Listing

Publication Analysis

Top Keywords

organic carbon
16
maize season
16
soil layer
16
soil
14
enzyme activity
12
subsoiling maize
12
soil organic
8
ecosystem multifunctionality
8
north china
8
china plain
8

Similar Publications

Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.

View Article and Find Full Text PDF

Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.

View Article and Find Full Text PDF

The study of electrochemical oxidations has wide-ranging implications, from the development of new electrocatalysts for fuel cells for energy conversion, to the synthesis of fine chemicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) has been used for decades as a sustainable, metal-free mediator for chemical oxidations and is now being used for electrochemical oxidations. We describe here a novel approach to TEMPO-mediated electrooxidations, in which the chemical input and waste generated during electrooxidations of alcohols are minimized by using a multifunctional room temperature ionic liquid (RTIL) to facilitate flow electrosynthesis.

View Article and Find Full Text PDF