98%
921
2 minutes
20
Background: Vascular smooth muscle cells (VSMCs), in response to a myriad of injurious stimuli, switch from a contractile state to a proliferative/migratory state in a process known as phenotypic modulation. Phenotypic modulation of VSMCs contributes to neointima formation and underscores a host of vascular pathologies, including atherosclerosis. In the present study, we investigated the involvement of Suv39h1 (suppressor of variegation 3-9 homolog 1), a lysine methyltransferase, in this process.
Methods: mice were crossbred to the -Cre mice to generate VSMC-restricted Suv39h1 knockout mice (conditional knockout). Vascular injury was created by carotid artery ligation. Cellular transcriptome was evaluated by RNA sequencing and cleavage under targets and tagmentation with deep sequencing.
Results: Suv39h1 upregulation was observed in animal and cell models of phenotypic modulation. Consistently, Suv39h1 silencing restored expression of contractile genes and attenuated proliferation/migration in VSMCs exposed to PDGF (platelet-derived growth factor)-BB. Importantly, Suv39h1 deletion significantly ameliorated neointima formation in mice in both the carotid artery injury model and the femoral artery injury model. Importantly, a small-molecule Suv39h1 inhibitor F5446 suppressed phenotypic modulation in vitro and mitigated vascular injury in mice. RNA sequencing identified HIC1 (hypermethylated in cancer 1) as a novel target for Suv39h1. HIC1 expression was repressed by Suv39h1 during VSMC phenotypic modulation, whereas HIC1 overexpression antagonized neointima formation in mice. Integrated transcriptomic analysis indicated that HIC1 might regulate VSMC phenotypic modulation by activating Jag1 (Jagged 1) transcription.
Conclusions: Our data suggest that Suv39h1 is a novel regulator of vascular injury and can be targeted for intervention of restenosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12094260 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.124.322048 | DOI Listing |
Mol Psychiatry
September 2025
Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy.
Early-life experiences shape neural networks, with heightened plasticity during the so-called "sensitive periods" (SP). SP are regulated by the maturation of GABAergic parvalbumin-positive (PV+) interneurons, which become enwrapped by perineuronal nets (PNNs) over time, modulating SP closure. Additionally, the opening and closing of SP are orchestrated by two distinct gene clusters known as "trigger" and "brake".
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
Gut-derived metabolites are essential for liver fibrogenesis. The aim of this study was to determine the alteration of indole-3-propionic acid (IPA), a crucial tryptophan metabolite, in liver fibrosis and delineate the roles of enterogenic IPA in fibrogenesis. In the present study, metabolomics assays focused on tryptophan metabolism were applied to explore the decreased levels of IPA in the feces and serum of cirrhotic patients, as well as in the feces and portal vein serum of fibrotic mice.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Shanxi Normal University, Taiyuan, 030000, PR China.
Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.
View Article and Find Full Text PDFJ Immunol
September 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Qidong-Fudan Innovative Institution of Medical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large quantities of subviral particles containing its surface antigen (HBsAg). T cells play a central role in controlling HBV infection but can also mediate liver injury and contribute to disease progression. However, the mechanisms that regulate T-cell responses to eliminate the virus without causing immunopathology during acute HBV infection remain poorly defined.
View Article and Find Full Text PDFImmunol Lett
September 2025
Department of Clinical and Translational Science, College of Graduate Health Science, University of Tennessee Health Science Center, Memphis, Tennessee. Electronic address:
Background: Patients with chronic lung diseases often suffer from pulmonary aspergillosis, caused by Aspergillus fumigatus (AF). Alveolar macrophages play a key role in the initial immune response to AF. Azithromycin (AZM), commonly known for its immunomodulatory properties in reducing exacerbations and improving lung function, has mixed effects on the development of aspergillosis.
View Article and Find Full Text PDF