98%
921
2 minutes
20
The question of how biodiversity influences ecosystem functioning and stability has been a central focus in ecological research. Yet, this question remains unresolved, primarily because of the widely divergent definitions of functioning, stability, and diversity. Consequently, forecasts of ecosystem services will remain speculative until we can establish more precise and comprehensive definitions for these concepts than previously. Here, we investigated how the maximum specific growth rate, productivity, mortality rate, and species interaction in microbial communities vary with a diversity gradient ranging from 1 to 16 species under control conditions, starvation, or saline stress. We found that diversity played a critical role in maintaining community growth and stability under control conditions, with higher diversity associated with increased maximum specific growth rate and decreased mortality rate. However, higher diversity was associated with an increased mortality rate under starvation, while diversity did not affect the mortality rate under saline stress. Diversity stabilized microbial productivity only under control conditions, defying the "diversity begets stability" hypothesis under stress. Beneficial interactions among species were prevalent in most samples, but species interaction increased mortality rates under starvation. Our findings suggest that while biodiversity is crucial for preserving ecosystem functioning and stability, the presence of multiple definitions and contextual dependence on environmental conditions argues against any general relationship between diversity and ecosystem functioning/stability. Furthermore, we provide new insights into the longstanding debate surrounding the "diversity begets stability" hypothesis and the "diversity destabilizes ecosystem" hypothesis in that diversity begets stability under control conditions but destabilizes ecosystems under severe stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038814 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgaf114 | DOI Listing |
Genome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFLipids Health Dis
September 2025
Department of Gastroenterology, Weifang People's Hospital, The First Affiliated Hospital of Shandong Second Medical University, 151 Guangwen Street, Weifang, Shandong, 261000, China.
Background: Current scoring systems for hypertriglyceridaemia-induced acute pancreatitis (HTG-AP) severity are few and lack reliability. The present work focused on screening predicting factors for HTG-SAP, then constructing and validating the visualization model of HTG-AP severity by combining relevant metabolic indexes.
Methods: Between January 2020 and December 2024, retrospective clinical information for HTG-AP inpatients from Weifang People's Hospital was examined.
BMC Mol Cell Biol
September 2025
School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
Retinitis pigmentosa (RP) affects around 1 in 4000 individuals and represents approximately 25% of cases of vision loss in adults, through death of retinal rod and cone photoreceptor cells. It remains a largely untreatable disease, and research is needed to identify potential targets for therapy. Mutations in 94 different genes have been identified as causing RP, including AGBL5 which encodes the main deglutamylase that regulates and maintains functional levels of cilia tubulin glutamylation, which is essential to initiate ciliogenesis, maintain cilia stability and motility.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2025
Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK.
X-chromosome inactivation (XCI) in mammals is orchestrated by the noncoding RNA X-inactive-specific transcript (Xist) that, together with specific interacting proteins, functions in cis to silence an entire X chromosome. Defined sites on Xist RNA carry the N-methyladenosine (mA) modification and perturbation of the mA writer complex has been found to abrogate Xist-mediated gene silencing. However, the relative contribution of mA and its mechanism of action remain unclear.
View Article and Find Full Text PDF