98%
921
2 minutes
20
The impact of histone lactylation modification (HLM) on glioblastoma (GBM) progression is not well understood. This study aimed to identify HLM-associated prognostic genes in GBM and explore their mechanisms of action. The presence and role of lactylation in glioma clinical tissue samples and its correlation with GBM progression were analysed through immunohistochemical staining and Western blotting. Sequencing data for GBM were obtained from publicly available databases. An initial correlation analysis was performed between global HLM levels and GBM. Differentially expressed HLM-related genes (HLMRGs) in GBM were identified by intersecting differentially expressed genes (DEGs) from the TCGA-GBM dataset, key module genes derived from weighted gene coexpression network analysis (WGCNA), and previously reported HLMRGs. Prognostic genes were subsequently identified through univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses, which formed the basis for constructing a risk prediction model. Associations between HLMRGs and GBM were further evaluated via single-cell RNA sequencing (scRNA-seq) datasets. Complementary analyses, including functional enrichment, immune infiltration, somatic mutation, and nomogram-based survival prediction, were conducted alongside in vitro experiments. Additionally, drug sensitivity and Chinese medicine prediction analyses were performed to identify potential therapeutic agents for GBM. We detected a significant increase in global lactylation levels in GBM, which correlated with patient survival. We identified 227 differentially expressed HLMRGs from the intersection of 3,343 differentially expressed genes and 948 key module genes, indicating strong prognostic potential. Notably, genes such as SNCAIP, TMEM100, NLRP11, HOXC11, and HOXD10 were highly expressed in GBM. Functional analysis suggested that HLMRGs are involved primarily in pathways related to cytokine‒cytokine receptor interactions, cell cycle regulation, and cellular interactions, including microglial differentiation states. Further connections were established between HLMRGs and infiltrating immune cells, particularly type 1 T helper (Th1) cells, as well as mutations in genes such as PTEN. The potential therapeutic agents identified included ATRA and Can Sha. The HLM-related gene risk prediction model shows substantial promise for improving patient management in GBM, providing crucial insights for clinical prognostic evaluations and immunotherapeutic approaches in GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036088 | PMC |
http://dx.doi.org/10.7150/jca.110646 | DOI Listing |
FASEB J
September 2025
Department of Surgery, McMaster University, Hamilton, Ontario, Canada.
Severe burns are a major global health concern, and are associated with long-term physical and psychological impairments, multi-organ dysfunction, and substantial morbidity and mortality. While burn injuries in adults trigger systemic immuno-metabolic alterations-characterized by white adipose tissue browning, elevated resting energy expenditure, widespread catabolism, and inflammation-these adaptive responses are considerably impaired in older adults, with molecular mechanisms behind these differences remaining largely unclear. As a key regulator of systemic metabolism, investigating the pathological role of adipose tissue (AT) postburn may reveal novel targets that could potentially improve patient outcomes.
View Article and Find Full Text PDFISME J
September 2025
Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
Although ammonia-oxidizing archaea (AOA) are globally distributed in nature, growth in biofilms has been relatively little explored. Here we investigated six representatives of three different terrestrial and marine clades of AOA in a longitudinal and quantitative study for their ability to form biofilm, and studied gene expression patterns of three representatives. Although all strains grew on a solid surface, soil strains of the genera Nitrosocosmicus and Nitrososphaera exhibited the highest capacity for biofilm formation.
View Article and Find Full Text PDFBackground: The goal was to explore the impact of the NR1D1 gene on the occurrence, development, and prognosis of colorectal cancer (CRC) using bioinformatics approaches.
Methods: CRC transcriptomic and clinical data from TCGA were analyzed to compare NR1D1 expression in tumors and various clinical stages. Survival differences between high and low NR1D1 expression groups were assessed using the R survival package.
Background: The lncRNA-miRNA-mRNA regulatory network is recognized for its significant role in cardiovascular diseases, yet its involvement in in-stent restenosis (ISR) remains unexplored. Our study aimed to investigate how this regulatory network influences ISR occurrence and development by modulating inflammation and immunity.
Methods: By utilizing data extracted from the Gene Expression Omnibus (GEO) database, we constructed the lncRNA-miRNA-mRNA regulatory network specific to ISR.
Gen Physiol Biophys
September 2025
The Second Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.
View Article and Find Full Text PDF