98%
921
2 minutes
20
Background: Skeletal muscle atrophy is a common musculoskeletal disorder that significantly reduces patient quality of life. Long non-coding RNA (lncRNA) XLOC_015548 has been identified as a pivotal regulator of C2C12 myoblast proliferation and differentiation. However, its role in mitigating denervation-induced muscle atrophy and the underlying mechanisms remain unclear.
Methods: We employed lentiviral-mediated stable expression of XLOC_015548 in C2C12 myoblasts and skeletal muscle-specific XLOC_015548-edited mouse models to investigate the function of this lncRNA. Muscle atrophy models were established by glucocorticoid-induced atrophy with dexamethasone (DEX) and by sciatic nerve transection-induced denervation. The MEK inhibitor U0126 was used to assess the role of the growth arrest and DNA damage-inducible 45 gamma/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (Gadd45g/MEK/ERK) signaling pathway.
Results: Overexpression of XLOC_015548 significantly activated the MEK/ERK signaling pathway ( < 0.05) by downregulating Gadd45g expression ( < 0.05) and promoting its cytoplasmic localization, thereby enhancing cell proliferation and myotube formation. Furthermore, XLOC_015548 reduced the level of reactive oxygen species (ROS) ( < 0.01), stabilized the mitochondrial membrane potential, and alleviated DEX-induced oxidative stress. These protective effects were partially reversed by U0126, confirming the involvement of the MEK/ERK pathway. Skeletal muscle-specific overexpression of XLOC_015548 significantly reduced denervation-induced muscle atrophy ( < 0.05) and increased the muscle fiber cross-sectional area.
Conclusion: XLOC_015548 plays a critical role in promoting myogenic differentiation and protecting against muscle atrophy by regulating Gadd45g expression, activating the MEK/ERK signaling pathway, and reducing oxidative stress. These findings underscore the therapeutic potential of XLOC_015548 in skeletal muscle atrophy, and provide a foundation for lncRNA-based treatment strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/FBL36233 | DOI Listing |
Cancer cachexia is a highly debilitating clinical syndrome of involuntary body mass loss featuring profound muscle wasting leading to high mortality. Notably, cardiac wasting is prominent in cancer patients and cancer survivors. Cachexia studies present significant challenges due to the absence of human models and mainly short-term animal studies.
View Article and Find Full Text PDFClin Med Insights Arthritis Musculoskelet Disord
September 2025
Department of Surgery, University of Arkansas for Medical Sciences, Fayetteville, AR, USA.
Polymyositis with concomitant scleroderma is a rare, progressive condition with profound consequences if not addressed promptly. Severity and symptom presentation varies between patients, and much is unknown about how best to treat overlapping connective tissue diseases. This case discusses the rare presentation, medical evaluation, and successful treatment of a 46-year-old woman with excessive muscle atrophy, weakness, and tissue fibrosis, who was diagnosed with overlapping connective tissue disorder after extensive work up that included a muscle biopsy, skin punch biopsy, and autoantibody lab work.
View Article and Find Full Text PDFFront Physiol
August 2025
Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
Sciatica, often resulting from lumbar disc herniation or nerve compression, disrupts electrical signal transmission, leading to muscle atrophy, mitochondrial dysfunction, and impaired energy metabolism. This study explored the therapeutic effects of Fu's subcutaneous needling (FSN) in a chronic constriction injury (CCI) rat model, assessing its impact on neuropathic pain, muscle mass, and structural integrity. Histological and ultrastructural analyses demonstrated that FSN alleviated hypersensitivity, reduced muscle atrophy, preserved mitochondrial density, and maintained glycogen storage.
View Article and Find Full Text PDFOpen Life Sci
August 2025
Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, No. 228, Jingui Road, Xian'an District, Xianning, Hubei, 437000, China.
Peripheral nerve injury-induced muscle atrophy is characterized by chronic inflammation and dysregulated macrophage polarization. RUNX1, a transcription factor upregulated in denervated muscle, has been implicated in linking muscle degeneration to inflammatory processes, but its downstream targets and mechanisms remain unclear. The aim of this study is to delineate the RUNX1-JUNB-NF-κB axis in driving inflammation-mediated muscle atrophy.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China.
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disorder characterized by muscle weakness, atrophy and myotonia, with multi-system involvement. Recent studies have highlighted the pathological heterogeneity within the CNS of DM1 patients, particularly significant changes in spinal transcriptome expression and alternative splicing. In this study, we conducted a comprehensive transcriptome analysis of the spinal cord in the muscle-specific DM1 mouse model and their wild-type controls across different life stages: young, adult and old age.
View Article and Find Full Text PDF