Fluorescence microscopy through scattering media with robust matrix factorization.

Cell Rep Methods

Laboratory for Systems Biophotonics, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia I

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological tissues, as natural scattering media, inherently disrupt structural information, presenting significant challenges for optical imaging. Complex light propagation through tissue severely degrades image quality, limiting conventional fluorescence imaging techniques to superficial depths. Extracting meaningful information from random speckle patterns is, therefore, critical for deeper tissue imaging. In this study, we present RNP (robust non-negative principal matrix factorization), an approach that enables fluorescence microscopy under diverse scattering conditions. By integrating robust feature extraction with non-negativity constraints, RNP effectively addresses challenges posed by non-sparse signals and background interference in scattering tissue environments. The framework operates on a standard epi-fluorescence platform, eliminating the need for complex instrumentation or precise alignment. The results from imaging scattered cells and tissues demonstrate substantial improvements in robustness, field of view, depth of field, and image clarity. We anticipate that RNP will become a valuable tool for overcoming scattering challenges in fluorescence microscopy and driving advancements in biomedical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146666PMC
http://dx.doi.org/10.1016/j.crmeth.2025.101031DOI Listing

Publication Analysis

Top Keywords

fluorescence microscopy
12
scattering media
8
matrix factorization
8
scattering
5
fluorescence
4
microscopy scattering
4
media robust
4
robust matrix
4
factorization biological
4
biological tissues
4

Similar Publications

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

A new water soluble mitochondria targeted ESIPT active acylhydrazone for the specific detection of Zn and S ions and bioimaging in HeLa cells.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile. Electronic address:

The development of multifunctional fluorescent organic materials capable of selective ion detection, subcellular targeting, and logical operations is a burgeoning area in chemical biology and materials science. Herein, we report the design and development of a novel acylhydrazone based fluorescent ligand (HSN·Cl), which exhibits a distinct "turn-on" emission response toward Zn ions and a subsequent "turn-off" response in the presence of sulfide ions (S). The molecular design incorporates structural elements that facilitate the ESIPT feature, conferring the probe with unique photophysical properties.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a well-established near-infrared dye which has been used clinically for several decades. Recently, it has been utilised for fluorescence-guided surgery in a range of solid cancer types, including sarcoma, with the aim of reducing the positive margin rate. The increased uptake and retention of ICG within tumours, compared with normal tissue, gives surgeons a visual reference to aid resection when viewed through a near-infrared camera.

View Article and Find Full Text PDF

This review is intended as a guideline for beginners in confocal laser scanning microscopy. It combines basic theoretical concepts, such as fluorescence principles, resolution limits, and imaging parameters with practical guidance on sample preparation, staining strategies, and data acquisition using confocal microscopy. The aim is to combine technical and methodological aspects in order to provide a comprehensive and accessible introduction.

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF