Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Enzyme-instructed self-assembly (EISA) is actively explored as a promising therapeutic approach for cancer treatment. However, the metabolic response of cancer cells to EISA remains under-studied. Here, by stimulated Raman scattering (SRS) imaging in C─H, fingerprint, and silent windows, it is found that the formation of peptide assemblies within and around cancer cells significantly enhances both lipids catabolism and fatty acids (FAs) uptake. It is further found that the increased uptake of FAs aids the resistance of cancer cells under EISA treatment, likely to cope with the stress induced by the peptide assemblies. Combining EISA with FAs uptake inhibition leads to enhanced cancer suppression compared to EISA alone, while additional FAs supplementation rescue cancer cells from EISA treatment, both in vitro and in 3D-culture spheroid models. These findings shed new light on the impact of EISA on the metabolic activities of cancer cells and suggest a new approach for improved cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119209PMC
http://dx.doi.org/10.1002/adhm.202500469DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
cells eisa
12
cancer
9
enzyme-instructed self-assembly
8
peptide assemblies
8
fas uptake
8
eisa treatment
8
eisa
7
cells
5
self-assembly reprograms
4

Similar Publications

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.

Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.

View Article and Find Full Text PDF

S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.

In Vitro Cell Dev Biol Anim

September 2025

Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.

S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.

View Article and Find Full Text PDF