98%
921
2 minutes
20
Docetaxel (DTX, 1) and paclitaxel (PTX, 2) are famous cytotoxic agents widely used in cancer therapy, however, their low specificity for tumor cells often results in severe systemic toxicity. Beyond conventional prodrug strategies, this study introduces a novel nanoconversion technology that chemically modifies DTX to form self-assembled nanoparticles (NPs), which subsequently convert into a paclitaxel-mimicking molecule (PTXm, 3). Hydrophilic acetylated Phe-Arg-Arg-Phe peptide ((Ac)FRRF, 4) and hydrophobic docetaxel were conjugated to prepare self-assembled (Ac)FRRF-DTX NPs. The selective cleavage of the Arg-Phe bond by cathepsin B, which is abundant in cancer cells, facilitated the nanoconversion of PTXm (3) from (Ac)FRRF-DTX NPs, demonstrating effective cytotoxic effects. Utilizing the cleavage site of peptide and specific sequences (ex. Arg-Arg-Phe), this approach does not simply act as a prodrug but allows the nanomaterial to transform into another cytotoxic biomolecule within tumors. (Ac)FRRF-DTX NPs exhibited remarkable physicochemical properties, superior anti-cancer efficacy, and low toxicity, showcasing an innovative conversion in peptide-conjugated nanomedicine. Unlike traditional prodrug chemistry, this tumor-specific nanoconversion process involves the biochemical transformation of DTX (1) into PTXm (3) via enzymatic action. Overall, this study provides an outstanding example of chemical drug molecular modification through the concept of nanoconversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033163 | PMC |
http://dx.doi.org/10.1186/s40580-025-00487-0 | DOI Listing |
J Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFNanotoxicology
September 2025
Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.
View Article and Find Full Text PDFInt J Pharm X
June 2025
Medical School, Southeast University, Nanjing 210009, China.
This study aimed to create multifunctional nanoparticles (NPs), specifically AS1411@MPDA-Len-Cy5.5 (AMLC), for the purpose of developing effective strategies for treating hepatocellular carcinoma (HCC) through targeted therapy and photothermal therapy (PTT). The study involved synthesizing mesoporous polydopamine (MPDA)-NPs, loading lenvatinib (Len) and Cy5.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.
View Article and Find Full Text PDFBeilstein J Nanotechnol
September 2025
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.
View Article and Find Full Text PDF