Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The field of reconstructive surgery faces significant challenges in addressing limb loss and disfigurement, with current organ preservation methods limited by short storage times. Decellularization offers a promising solution for generating engineered alternatives for reconstructive surgery by removing cellular material while preserving the extracellular matrix (ECM) and providing scaffolds for tissue regeneration. In this study, we developed a robust protocol for decellularizing whole digits from long-term freezer storage, achieving the successful removal of cellular material with intact ECM. Digit angiography confirmed the preservation of vascular integrity, facilitating future perfusion for recellularization. Quantitative analysis revealed significantly lower DNA content in decellularized tissues, indicating effective decellularization. Furthermore, extracellular matrix analysis showed the preservation of collagen, elastin, and glycosaminoglycans (GAGs) contents. Histological examination confirmed the reduction in cellularity and maintenance of tissue architecture in decellularized digits. Mechanical strength testing of decellularized digit tendons proved consistent with that of native digits. Our findings highlight the potential of decellularized digits as versatile platforms for tissue engineering and regenerative medicine. Moving forward, further optimization of protocols and collaborative efforts are essential for translating these findings into clinical practice, offering innovative solutions for reconstructive surgery and limb transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025325PMC
http://dx.doi.org/10.3390/bioengineering12040383DOI Listing

Publication Analysis

Top Keywords

reconstructive surgery
12
cellular material
8
extracellular matrix
8
decellularized digits
8
digits
5
decellularization human
4
human digits
4
digits step
4
step off-the-shelf
4
off-the-shelf composite
4

Similar Publications

Progress in immunoregulatory mechanisms during distraction osteogenesis.

Front Bioeng Biotechnol

August 2025

Department of Orthopaedic and Reconstructive Surgery/Pediatric Orthopaedics, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.

Distraction osteogenesis (DO) is an endogenous bone tissue engineering technique that harnesses the regenerative potential of bone and has been widely applied in limb lengthening, bone defect repair, and craniofacial reconstruction. The DO procedure consists of three distinct phases: the latency phase, the distraction phase, and the consolidation phase, each characterized by unique biological processes. In recent years, increasing attention has been directed toward the role of the immune system during DO.

View Article and Find Full Text PDF

Utilizing biomaterials for laryngeal respiratory mucosal tissue repair in an animal model.

Biomater Biosyst

September 2025

ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.

View Article and Find Full Text PDF

Introduction: Synovial sarcoma (SS) is one of the most prevalent malignant soft tissue sarcomas in children and adolescents. Pediatric populations often present with atypical features, complicating the differentiation from benign intramuscular venous malformations (VMs).

​​case Presentation: An 11-year-old male with a four-year history of progressive right plantar pain and a compressible intramuscular mass.

View Article and Find Full Text PDF

Tuberous breast deformity in a transgender woman: a case report.

J Surg Case Rep

September 2025

Division of Plastic and Reconstructive Surgery, University of California, Los Angeles, 200 Medical Plaza, Suite 460, Los Angeles, CA 90095, United States.

Tuberous breast deformity was first documented by Rees and Aston in 1976. The deformity is well documented in cisgender women, with rare cases in cisgender men often associated with gynecomastia, and almost no reports in transgender women. Herein, we present a case of a 32-year-old transgender woman who developed bilateral tuberous breast deformity after 10 years of hormone replacement therapy.

View Article and Find Full Text PDF

Artificial intelligence (AI) is increasingly reshaping cosmetic surgery by enhancing surgical planning, predicting outcomes, and enabling objective aesthetic assessment. Through narrative synthesis of existing literature and case studies, this perspective paper explores the issue of algorithmic bias in AI-powered aesthetic technologies and presents a framework for culturally sensitive application within cosmetic surgery practices in the Middle East and North Africa (MENA) region. Existing AI systems are predominantly trained on datasets that underrepresent MENA phenotypes, resulting in aesthetic recommendations that disproportionately reflect Western beauty ideals.

View Article and Find Full Text PDF