98%
921
2 minutes
20
Background: Vocal learning is a rare, convergent trait that is fundamental to both human speech and birdsong. The Forkhead Box P2 (FOXP2) transcription factor appears necessary for both types of learned signals, as human mutations in FOXP2 result in speech deficits, and disrupting its expression in zebra finches impairs male-specific song learning. In juvenile and adult male finches, striatal FOXP2 mRNA and protein decline acutely within song-dedicated neurons during singing, indicating that its transcriptional targets are also behaviorally regulated. The identities of these targets in songbirds, and whether they differ across sex, development and/or behavioral conditions, are largely unknown.
Results: Here we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to identify genomic sites bound by FOXP2 in male and female, juvenile and adult, and singing and non-singing birds. Our results suggest robust FOXP2 binding concentrated in putative promoter regions of genes. The number of genes likely to be bound by FOXP2 varied across conditions, suggesting specialized roles of the candidate targets related to sex, age, and behavioral state. We interrogated these binding targets both bioinformatically, with comparisons to previous studies, and biochemically, with immunohistochemistry using an antibody for a putative target gene. Gene ontology analyses revealed enrichment for human speech- and language-related functions in males only, consistent with the sexual dimorphism of song learning in this species. Fewer such targets were found in juveniles relative to adults, suggesting an expansion of this regulatory network with maturation. The fewest speech-related targets were found in the singing condition, consistent with the well-documented singing-driven down-regulation of FOXP2 in the songbird striatum.
Conclusions: Overall, these data provide an initial catalog of the regulatory landscape of FOXP2 in an avian vocal learner, offering dozens of target genes for future study and providing insight into the molecular underpinnings of vocal learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032786 | PMC |
http://dx.doi.org/10.1186/s12868-025-00948-6 | DOI Listing |
Biologics
September 2025
Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Beijing, People's Republic of China.
Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.
View Article and Find Full Text PDFInt J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Mol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China.
Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.
View Article and Find Full Text PDFFuture Med Chem
September 2025
Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China.
The nuclear receptor binding SET domain (NSD) family of histone methyltransferases, which comprised NSD1, NSD2, and NSD3. They play a pivotal role in catalyzing mono- and dimethylation of histone H3 at lysine 36 (H3K36me1/2), a modification critical for maintaining chromatin structure and transcriptional fidelity. Dysregulation of NSD enzymes, often through overexpression, mutation, or chromosomal translocation, has been implicated in a broad spectrum of malignancies and various diseases.
View Article and Find Full Text PDF