98%
921
2 minutes
20
Oceanic dimethyl sulfide (DMS) is a major source of atmospheric sulfur, particularly significant in the Antarctic region. This study conducted nine sensitivity simulations using the Community Earth System Model version 2, combining three seawater DMS climatological inventories and three gas transfer velocities. The most sensitive changes in atmospheric DMS were simulated over the subpolar region according to the DMS inventories and gas transfer velocities. Seasonal variations in atmospheric DMS peaked during the austral summer, except for the continental region, where the peaks occurred in the austral winter. These simulation results were also compared with ship-borne measurements obtained in March 2018, and generally showed significant consistency under specific temporal and regional conditions. The model indicated that DMS concentrations are strongly influenced by the seawater DMS inventory and gas transfer velocity, with this sensitivity varying considerably across different regions and periods, particularly under intense wind conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2025.118033 | DOI Listing |
Langmuir
September 2025
College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China.
In recent years, amino acids have garnered extensive attention as environmentally friendly, small-dose additives for modulating hydrate formation and aggregation behavior. Amino acids, due to their amphiphilic nature, can adsorb at the gas-liquid interface and on hydrate crystal surfaces, thereby modifying interfacial properties and influencing crystal growth patterns. In our measurements, the amino acids displayed a concentration-dependent "double effect".
View Article and Find Full Text PDFFood Res Int
November 2025
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China. Electronic a
While restructuring agricultural products enhances heat and mass transfer during freeze-drying, the underlying mechanisms remain poorly understood. This study employed a multiscale approach, combining freezing dynamics, sublimation drying kinetics, X-ray tomography, gas permeability assessments, thermodynamic parameters analysis, and mathematical modeling to systematically investigate the differences in transfer properties between natural and restructured peaches across the freezing and sublimation drying processes. Key results demonstrated that restructuring decreased the freezing time by 21.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Environment and Energy, Sejong University, Seoul 05006, South Korea. Electronic address:
Identifying the sources of sedimentary organic matter (OM) is essential for understanding pollution dynamics and guiding effective management in estuarine environments. This study proposes a novel and transferable source tracking framework that integrates Fourier transform infrared (FTIR) and fluorescence spectroscopy with a principal component analysis-absolute principal component score-multiple linear regression (PCA-APCS-MLR) receptor model to apportion OM sources in surface sediments across four South Korean estuaries with contrasting land use. Five new infrared-based indices (IRIs), developed from diagnostic FTIR absorbance features of water-extractable organic matter (WEOM), were designed to capture source-specific functional group compositions linked to terrestrial, synthetic, and petroleum-derived OM.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
The -hydroxyphenyl (H) unit is an aromatic structure found in lignin, particularly abundant in compression wood and grass, and is derived from the incorporation of -coumaryl alcohol (-CMA). Although the structural and biosynthetic aspects of lignin have been extensively studied, the polymerization reactivity of H-unit during lignification remains poorly understood. In this study, horseradish peroxidase (HRP)-catalyzed homo- and co-oxidative coupling reactions (initial stage of enzymatic dehydrogenative polymerization) with -CMA and/or coniferyl alcohol (CA) were performed to investigate monolignol consumption, dilignol formation, and their potential involvement in subsequent polymerization.
View Article and Find Full Text PDFChem Rec
September 2025
Department of Chemical Engineering, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, M. P., 462066, India.
Flow fields (FFs) play multifaceted roles in direct methanol fuel cells (DMFC) by facilitating the transport and distribution of species, removal of products, support to the membrane electrode assembly (MEA), electrical conductivity, water, and thermal management. Therefore, the performance of DMFC is directly related to the pattern and geometry of the FF. DMFCs can generate power density of up to ≈100-300 mW cm; however, their performance is impeded by cathode flooding, CO gas bubbles formation, and mass transfer limitations.
View Article and Find Full Text PDF