98%
921
2 minutes
20
The DNA-Dependent Protein Kinase catalytic subunit (DNA-PKcs) acts as a principal executor in the DNA damage response (DDR), mediating the phosphorylation of a broad spectrum of substrates integral to DNA repair and apoptosis. This investigation seeks to discern the possible association and mechanisms linking hyperglycemia-induced ferroptosis and DNA-PKcs in DCM. This data exhibits a substantial activation of DNAPKcs- dependent DDR in mice with streptozotocin-induced DCM. However, deletion of DNA-PKcs in cardiomyocytes notably mitigates DNA damage, enhances heart function and dampens the inflammatory response. Co-IP/MS analysis and subsequent validation experiments demonstrate that DNA-PKcs directly interacts with and phosphorylates YAP1 at Thr226. This phosphorylation event facilitates the nuclear retention of YAP1, where it intensifies the transcription of ferroptosis-associated genes. Knockin mice expressing a nonphosphorylatable T226A YAP1 mutant display decreased ferroptosis, reduced myocardial fibrosis and improved heart function. Taken together, this study unravels that DDR acts as an intracellular stress damage sensor, perceiving hyperglycemic conditions and subsequently transmitting the damage signal to incite ferroptosis through the interplay between DNA-PKcs and YAP1. This novel insight suggests that the DNA-PKcs-mediated YAP1 phosphorylation and the ferroptosis activation could be the promising therapeutic targets for the management of DCM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302537 | PMC |
http://dx.doi.org/10.1002/advs.202412698 | DOI Listing |
Elife
September 2025
Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.
Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hr after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
September 2025
The Hippo pathway and its transcription co-activator YAP play a critical role in the regulation of cell proliferation, apoptosis and the control of organ size. In the past several years, YAP has been found to be expressed in various human cancers, however, its expression in Nasopharyngeal Carcinoma (NPC) remains unstudied. In this report, we found that YAP was overexpressed in human NPC tissues, and its expression was also significantly higher in five NPC cell lines when compared with the nasopharyngeal epithelial cell line NP69 (P < 0.
View Article and Find Full Text PDFCardiovasc Ther
September 2025
Department of Cardiac Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Yes-associated protein (YAP) is a major downstream nuclear coactivator of the Hippo pathway and is activated during myocardial hypertrophy. Verteporfin, a YAP inhibitor, may serve as a potential treatment for myocardial hypertrophy. This study was aimed at exploring the role and underlying mechanisms of verteporfin in isoproterenol (ISO)-induced myocardial hypertrophy both in vivo and in vitro.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
July 2025
the First Hospital of Hunan University of Chinese Medicine Changsha 410007, China Hunan University of Chinese Medicine Changsha 410208, China Hunan Academy of Chinese Medicine Changsha 410006, China.
This study aims to explore the mechanism of Buyang Huanwu Decoction(BHD) in promoting angiogenesis after oxygen-glucose deprivation/reoxygenation(OGD/R) of mouse brain microvascular endothelial cell line(brain-derived Endothelial cells.3, bEnd.3) based on the caveolin-1(Cav1)/Yes-associated protein 1(YAP1)/hypoxia-inducible factor-1α(HIF-1α) signaling pathway.
View Article and Find Full Text PDFJ Cell Mol Med
September 2025
Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Protein S-palmitoylation, a dynamic and reversible post-translational modification involving the attachment of palmitate to cysteine residues, is a key regulator of protein functionality and cellular signalling. Dysregulation of this modification has emerged as a critical driver of cancer progression. Among the 23 DHHC palmitoyl transferases responsible for catalysing S-palmitoylation, aberrant expression of specific members is linked to tumorigenesis and development, underscoring their potential as promising therapeutic targets.
View Article and Find Full Text PDF