98%
921
2 minutes
20
Significance: Spatial frequency domain imaging (SFDI) is an emerging optical imaging modality for visualizing tissue absorption and scattering properties. This approach is promising for noninvasive wide field-of-view (FOV) monitoring of biophysiological processes .
Aim: We aim to develop deep-learning-enabled spatial frequency domain imaging (SFDI-net) for real-time large FOV imaging of the optical, structural, and physiological properties and demonstrate its application for probing the spatiotemporal dynamics of skin physiology.
Approach: SFDI-net, based on mapping of a two-layer structure into an equivalent homogeneous medium for spatially modulated light and with a convolutional neural network architecture, produces two-dimensional maps of optical, structural, and physiological parameters for bilayered tissue, including cutaneous hemoglobin concentration, oxygen saturation, scattering properties (reduced scattering coefficient and scattering power), melanin content, surface roughness, and epidermal thickness, with visible spatially modulated light at the camera frame rate.
Results: Compared with traditional approaches, SFDI-net achieves a real-time inversion speed and significantly improves image quality by effectively suppressing noise while preserving tissue structure without oversmoothing. We demonstrate the application of the SFDI-net for monitoring the spatiotemporal dynamics of forearm skin physiology in reactive hyperemia and rhythmic respiration and reveal their intricate patterns in hemodynamics.
Conclusions: Deep-learning-enabled spatial frequency domain imaging and SFDI-net may offer insights into the cardiorespiratory system and have promising clinical utility for disease diagnosis, surveillance, and therapeutic assessment. Future hardware and software advancements will bring SFDI-net to clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014942 | PMC |
http://dx.doi.org/10.1117/1.JBO.30.4.046008 | DOI Listing |
J Urban Health
September 2025
Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium.
Timely access to comprehensive , high-quality emergency obstetric and neonatal care can prevent maternal and neonatal mortality but remains challenging in Benin. We examine geographic accessibility to childbirth care (CBC) in Grand Nokoué, the largest conurbation in Benin. We gathered data on boundaries, health facilities, road network, elevation, land cover, relative wealth, urbanicity, and geo-traced travel speeds over 45 days during the rainy season.
View Article and Find Full Text PDFExp Brain Res
September 2025
Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy.
Postdiction is a perceptual phenomenon where the perception of an earlier stimulus is influenced by a later one. This effect is commonly studied using the 'rabbit illusion', in which temporally regular, but spatially irregular, stimuli are perceived as equidistant. While previous research has focused on short inter-stimulus intervals (100-200 ms), the role of longer intervals, which may engage late attentional processes, remains unexplored.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
September 2025
Department of Physics of Condensed Matter, Optics Area. Vision Research Group (CIVIUS), University of Seville, Avenida de la Reina Mercedes s/n (41012), Seville, Spain.
Purpose: To analyze the relationship between various visual function parameters (refractive status, visual acuity and contrast sensitivity) and macular pigment optical density (MPOD) values, as well as dietary intake of lutein and zeaxanthin in a pediatric population.
Methods: Thirty-six healthy White pediatric patients participated in this cross-sectional study conducted at the Optometry Clinic (Faculty of Pharmacy, Seville, Spain). MPOD values were measured using the MPSII (Macular Pigment Screener II).
Anal Chem
September 2025
National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China.
In this paper, a single-quartz-enhanced photoacoustic-photothermal dual spectroscopy sensor based on a spherical acoustic resonator (SAR) is reported for the first time. The dual spectroscopy of quartz-enhanced photoacoustic spectroscopy (QEPAS) and quartz-enhanced photothermal spectroscopy (QEPTS), utilizing a single quartz tuning fork (QTF), eliminates the frequency mismatch issue that occurs when multiple QTFs are used. The dual spectroscopy model was constructed using the finite element method, which provides numerical simulation support for subsequent experiments.
View Article and Find Full Text PDFMagn Reson Chem
September 2025
Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.
View Article and Find Full Text PDF