Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Natural rivers exhibit complex and dynamic flow conditions that significantly influence the survival and development of semi-buoyant fish eggs. This study investigated the effects of flow velocities and turbulence on silver carp eggs (Hypophthalmichthys molitrix) during their development. Laboratory experiments conducted in an annular flume revealed that moderate flow conditions (0.5 m/s) yielded optimal hatching rates, while excessive velocities (1.1 m/s) led to complete mortality at the Late Blastula stage. Mild turbulence facilitated egg incubation, whereas intense turbulence reduced hatching success and increased larvae deformation rates. These findings revealed distinct relationship between hydrodynamic conditions and embryonic development, indicating that optimal spawning conditions differ from those required for successful hatching. These results provide fundamental insights for evaluating suitable hydraulic conditions in river habitats and assessing the potential impacts of hydraulic structures on fish populations. The study contributes valuable knowledge to river ecosystem management, semi-buoyant fish species conservation, and fish-friendly hydraulic structure design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013886PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0320798PLOS

Publication Analysis

Top Keywords

hydraulic conditions
8
silver carp
8
egg incubation
8
flow conditions
8
semi-buoyant fish
8
conditions
6
spawn survival
4
survival decoding
4
hydraulic
4
decoding hydraulic
4

Similar Publications

Design of a modified model predictive control and composite control strategy for hydraulic turbine regulation system.

ISA Trans

August 2025

Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education, Wuhan 430081, China; Institute of Robotics and Intelligent Systems, Wuhan University of Science and Technology, Wuhan 430081, China; School of Artifitial Intelligence and Automation, Wuhan U

As a critical component in hydropower systems, the Hydraulic Turbine Regulation System (HTRS) exhibits strong coupling characteristics that impose substantial challenges on control system design, necessitating the development of high-performance control strategies. To address the complex control requirements, this paper proposes an improved T-S fuzzy modeling method based on the Luenberger observer theory. It constructs a system model that combines high accuracy and simplicity.

View Article and Find Full Text PDF

Weakly hydrophobic antibiotics leaching in an alpine soil of the Tibetan Plateau in responding to macropore flow.

J Hazard Mater

September 2025

School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China; Sichuan Engineering Research Center for Pollution Control in Rail Transit Engineering, Chengdu, Sichuan 611756, China; Sichuan International Science and Technology Cooperation base for Int

In alpine meadow regions, macropore flow is a critical but inadequately understood pathway for antibiotic transport. The complex relationship between macropore structure, flow dynamics, and solute properties presents a significant research gap. Methodological limitations hinder the accurate characterization of solute migration mechanisms due to complex macropore structures.

View Article and Find Full Text PDF

How does large-scale underground mining affect the water cycle? - Comprehensive analysis based on isotopes, water levels and hydrogeological conditions.

J Environ Manage

September 2025

State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Ecohydrology and High Efficient Utilization of Water Resources, Hohhot, 010018, China; Inner Mongolia Section of the Yellow

Large-scale underground coal mining alters regional water cycles, yet the mechanisms governing interactions among water bodies in deep mining areas are poorly understood. For this purpose, by integrating hydrogen and oxygen isotopes, water levels, hydrogeological conditions, and end-member mixing analysis (EMMA), this study systematically analyzed and quantified the circulation and transformation mechanisms among different water bodies influenced by coal mining. Key findings reveal: (1) Mining-induced fractures disrupt the aquitard above the coal seam, establishing a direct hydraulic link between Zhiluo Formation confined groundwater and mine water, with the former contributing 87.

View Article and Find Full Text PDF

Divergent leaf water strategies in three coexisting desert shrub species: from the perspective of hydraulic, stomatal, and economic traits.

Tree Physiol

September 2025

Linze Inland River Basin Research Station, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e.

View Article and Find Full Text PDF

Stomatal regulation, leaf water relations, and leaf phenology are coordinated in tree species from the Sonoran Desert.

AoB Plants

October 2025

Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.

To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.

View Article and Find Full Text PDF