Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An innovative method based on inductively coupled plasma mass spectrometry (ICP-MS) was developed to quantify the time-dependent systemic redistribution pattern of pulmonary-deposited crystalline silica particles by measuring silicon (Si) levels in the lungs, distal organs, and biological fluids. The method was applied in a murine model and validated in blood and urine samples from two occupationally exposed cohorts (miners and porcelain industry workers). In mice, 30 % of silica particles deposited in the lungs via oropharyngeal administration accumulated in extrapulmonary sites in less than 4 months. An early translocation (within 3 days) resulted in silica distribution to liver and kidneys (13 %), followed by a delayed migration (up to 60 days) in mediastinal lymph nodes (12 %), spleen (1.7 %), and abdominal skin (1.7 %). The long-term increase of Si in urine suggested silica renal clearance. Our data also indicated that the toxic potential of particles is a key determinant of extrapulmonary redistribution. The interest of Si as biomarker of exposure has been confirmed in workers exposed to crystalline silica dust. In these individuals, elevated Si levels in blood and urine paralleled silica exposure. Our findings quantify the dynamics of silica biodistribution in extrapulmonary organs, offering new insights on the biomonitoring of silica exposure in different scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2025.109473DOI Listing

Publication Analysis

Top Keywords

silica particles
12
silica
9
extrapulmonary sites
8
crystalline silica
8
blood urine
8
silica exposure
8
dynamic biodistribution
4
biodistribution inhaled
4
inhaled silica
4
particles
4

Similar Publications

Particles with some degree of hydrophilicity are known to aggregate when directly dispersed in non-aqueous media. Proteins are generally insoluble in oil and have complex surface properties, but they may form networks in oil like more simple colloidal particles, depending on particle size and surface hydrophilicity. Here, the particle size of pea protein isolate (PPI) particles in oil was reduced to submicron sizes by stirred media milling.

View Article and Find Full Text PDF

SiO NP promotes allergic gastritis induced by degranulation of mouse MC9 cell through AQP4-mediated impairment of SIRT3-TFAM deacetylation and mitochondrial autophagy.

J Hazard Mater

September 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C

Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.

View Article and Find Full Text PDF

Evaluation of advanced SEM-EDX tools for classification of complex particles in respirable dust.

J Hazard Mater

September 2025

Mining and Minerals Engineering, Virginia Tech, Blacksburg, VA, USA. Electronic address:

Occupational lung disease remains a serious concern among miner workers, underscoring the need for improved characterization of respirable dust. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) enables high-resolution analysis of filter samples, but accurate identification of complex, multi-constituent particles like agglomerates during direct-on-filter (DOF) analysis remains challenging. This is because standard tools for automated SEM-EDX treat each dust entity as an independent particle.

View Article and Find Full Text PDF

As living standards continue to rise, the demand for advanced cotton textiles that fulfill enhanced functional requirements has grown significantly. Therefore, the development of multifunctional antibacterial/hydrophobic cotton fabrics holds considerable practical value. In this study, a zeolitic imidazolate framework (ZIF-8) based hybrid material, ZIF/SiO-LDS (Long-chain derivative of silane), was synthesized via a co-precipitation method using silica, zinc nitrate hexahydrate, 3-aminopropyltriethoxysilane (KH-550), 2-methylimidazole and hexadecyltrimethylsilane (HDTMS).

View Article and Find Full Text PDF

Phosphogypsum is an acidic solid waste mainly composed of CaSO₄-2H₂O by-products of the wet process phosphoric acid industry, which has the characteristics of high impurity content, poor stability of stockpiling, but can be utilized in a resourceful way. Phosphogypsum waste utilization can reduce environmental pollution, save resources and create economic value. In order to investigate the fatigue characteristics and the mechanism of dynamic strength change of cement-phosphogypsum-red clay under wet and dry cycles, the cumulative deformation characteristics and the rule of change of critical dynamic stress of the mixed materials were investigated by dynamic triaxial fatigue test, SEM and XRD test, and the mechanism of dynamic strength change was analyzed according to the microstructure and the chemical mineral composition of the mixed materials.

View Article and Find Full Text PDF