98%
921
2 minutes
20
During embryonic development, zygotic genome activation (ZGA) is a critical event that determines the rational process and the fate of embryonic cells. The tricarboxylic acid cycle (TCA cycle) provides necessary reactants and energy for biological activities such as genome activation, chromatin opening, and epigenetic modifications during ZGA. Recent studies have shown that during ZGA, core enzymes associated with TCA briefly enter the nucleus and participate in initiating the ZGA process. However, the regulatory relationship between ZGA factors, such as Dux, Dppa2, and Dppa4, and the core enzymes of the TCA cycle remains unknown. In this study, we found that Dppa2 plays a key role in ZGA by directly determining the localization of TCA core enzymes, thereby affecting the early embryonic development. To further investigate the effect of Dppa2 on the localization of pyruvate dehydrogenase (PDH), we followed the establishment of an inducible Dppa2 transgenic mouse model. We found that the "chronoectopic" expression of Dppa2 prior to normal ZGA time could lead to the advanced nuclear localization of PDH. In summary, Dppa2 plays a key role in ZGA, directly determining the location of TCA core enzymes in early embryos. This study provides a theoretical basis for early embryonic development at the metabolic regulation level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11989748 | PMC |
http://dx.doi.org/10.3390/ijms26073436 | DOI Listing |
PLoS One
September 2025
Department of Biological Sciences, University of Limerick, Limerick, Ireland.
This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.
View Article and Find Full Text PDFJ Cell Biol
October 2025
Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
The mechanisms governing mammalian proton pump V-ATPase function are of fundamental and medical interest. The assembly and disassembly of cytoplasmic V1 domain with the membrane-embedded V0 domain of V-ATPase is a key aspect of V-ATPase localization and function. Here, we show that the mammalian protein ATG16L1, primarily appreciated for its role in canonical autophagy and in noncanonical membrane atg8ylation processes, controls V-ATPase.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
Background: Understanding starch behavior under various processing conditions is important for the development of novel food products with tailored nutritional profiles. This study investigated changes to the structure and properties of native corn starch (NCS) and biomimetic starch-entrapped microspheres following thermal and enzymatic treatments.
Results: Heat-treated microspheres showed more birefringence and structural order than native starch, indicating incomplete gelatinization due to the alginate matrix.
Medicine (Baltimore)
September 2025
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Epigallocatechin-3-gallate (EGCG), the predominant bioactive compound in green tea, has shown promise in lung cancer treatment; however, its molecular targets and antitumor mechanisms remain unclear. In this study, the therapeutic potential of EGCG against non-small cell lung (NSCLC) was evaluated, core targets were prioritized via network pharmacology, and molecular docking were employed to decipher the potential mechanism of action. Using bioinformatics, molecular docking, and functional enrichment analyses, 224 NSCLC-related targets were identified, with TP53, STAT3, AKT1, IL6, HSP90AA1, and JUN emerging as central hubs.
View Article and Find Full Text PDFFood Res Int
November 2025
Brewing Technology Industrial College, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, PR China; Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province 441053, PR China; Xiangyang Lacti
Houhuo Daqu (HHD) exhibits significant heterogeneity between its core and peel layers, yet their differences remain underexplored. This study integrates metagenomic sequencing and electronic sensory technologies to compare the physicochemical properties, microbial communities, and flavor profiles of HHD's core and peel. Results reveal distinct microbial communities and diversity between the layers.
View Article and Find Full Text PDF