98%
921
2 minutes
20
Corydalis Decumbentis Rhizoma (Xiatianwu, XTW) exhibits a positive effect in treating rheumatoid arthritis (RA). However, the precise molecular mechanisms underlying its effects remain unclear. In this study, TNF-α was used to induce inflammation and establish and in vitro RA model. Network pharmacology was employed to identify the important active components and targets in the treatment of XTW on RA. CCK-8 was used to investigate the cell viability. GW9662 (a PPARG antagonist) was applied to validate the network pharmacology prediction. ELISA was used to measure pro-inflammatory cytokines (IL-6, IL-1β, and INF-γ) and oxidative stress markers (MMP-2, MDA, and ROS). HPLC-MS was conducted to validate the four important active ingredients (bicuculline, ferulic acid, berberine, and jatrorrhizine) in XTW. Western blotting was carried out to detect the protein levels of PPAR-γ. In vitro experiments demonstrated that XTW exerted dose-dependent anti-RA effects by downregulating pro-inflammatory cytokines and oxidative stress markers. Through Network pharmacology, three targets (RXRA, PPARG, and PPARA) and four active ingredients (bicuculline, ferulic acid, berberine, and jatrorrhizine) were demonstrated important in the treatment of XTW on RA. Besides, PPAR signaling pathway may be a therapeutic target for XTW treating RA. Further experiments confirmed that XTW administration significantly inhibited inflammation and oxidative stress by upregulating the PPAR signaling pathway. In conclusion, XTW modulates RXRA, PPARG, and PPARA through the PPAR signaling pathway, thereby mitigating inflammation and oxidative stress in RA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fitote.2025.106541 | DOI Listing |
RSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Objective: This study aimed to investigate comorbidity patterns and potential pathogenic mechanisms in patients with Hashimoto's thyroiditis (HT).
Methods: Patients with HT who visited the outpatient clinic of the Thyroid Department at Dongzhimen Hospital, Beijing University of Chinese Medicine, between June 2021 and December 2024 were included. Association rule analysis and logistic regression analysis were performed using SPSS 25.
Front Neural Circuits
September 2025
Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
Introduction: Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.
Methods: We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays.
Neuropsychiatr Dis Treat
September 2025
Medical College, Tibet University, Lhasa, Tibet, People's Republic of China.
Background: Tripterygium glycoside (TG) has been reported to have the effect of ameliorating Alzheimer's disease (AD)-like symptoms in mice model. However, the underlying mechanism is largely unknown. This study aimed to investigate the potential mechanism of TG against AD by integrating metabolomics, 16s rRNA sequencing, network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFDiabetes Obes Metab
September 2025
Department of Pharmacology, Kagawa University, Kagawa, Japan.
Aim: Sodium-glucose cotransporter 2 (SGLT2) inhibitors consistently demonstrate renal protection against progressive kidney disease. We hypothesised that SGLT2 inhibition reduces blood glucose levels in peri-proximal tubular capillaries by limiting reabsorption from the tubular filtrate, thereby safeguarding the renal microvasculature from hyperglycaemic stress.
Materials And Methods: In anaesthetised streptozotocin-induced type 1 and Otsuka-Long Evans fatty (OLETF) type 2 diabetic rats, we measured the arterial-to-renal venous glucose ratio (RV/A) to evaluate the effects of canagliflozin, a SGLT2 inhibitor.