98%
921
2 minutes
20
Leishmaniasis, caused by the protozoan parasites of the genus Leishmania, poses a significant global health challenge, particularly in the resource-limited regions where it causes high mortality. Regardless in the progress of treatment strategies, the emergence of drug resistance and limited efficacy requires the search of novel therapy and therapeutic targets. MicroRNAs, the crucial post-transcriptional regulators of gene expression, play critical roles in host-pathogen interactions. Here, we screened the miRNAs dysregulated during Leishmania donovani infection through literature search. hsa-miR-330-5p, one of the miRNAs which through human KEGG 2021 and Human Cyc 2016 analysis was found to be involved in multiple pathways including sphingolipid signaling pathway. Sphingolipids are important class of lipids involved in different cellular processes and therefore are the targets of many pathogens including Leishmania. hsa-miR-330-5p was found downregulated after 24 h of Leishmania donovani infection in THP-1 derived human macrophages. Target prediction of sphingolipid biosynthetic genes through in silico prediction tools showed 3 UTR of serine palmitoyltransferase long chain base subunit 1 to be a target of hsa-miR-330-5p. The in silico target prediction of hsa-miR-330-5p was validated by cloning the 3 UTR target sequence of gene, transfecting and performing luciferase assay in HEK 293 T cell line. Transfection of mimic of hsa-miR-330-5p reduced the luciferase activity which validated the in silico target prediction. Further, mimic of hsa-miR-330-5p inhibited the expression of the target gene, serine palmitoyltransferase long chain base subunit 1 and augmented the expression of pro-inflammatory cytokines in L. donovani infected THP-1 derived macrophages. Mimic of hsa-miR-330-5p also led to a significant reduction in the intracellular parasite burden in both THP-1 derived as well as primary human macrophages. This study has not only identified the sphingolipid biosynthesis regulatory miRNA but will also help in the development of novel and effective treatment strategy against leishmaniasis in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-025-04325-z | DOI Listing |
Microb Pathog
September 2025
Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India. Electronic address:
Leishmania donovani is an intracellular protozoan parasite that has successfully evolved to manipulate host macrophages. The exact mechanism by which Leishmania spp evades macrophage function is not fully understood. Recently, several studies have shown that pathogens target host-microRNA to alter cellular pathways for their persistence.
View Article and Find Full Text PDFPLoS One
September 2025
School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China.
Background: Huanglian Wendan Decoction (HLWDD), a classical traditional Chinese medicine (TCM) formula, has shown therapeutic promise in treating metabolic disorders. However, its underlying mechanisms against non-alcoholic fatty liver disease (NAFLD) remain unclear.
Objective: This study aimed to elucidate the pharmacological mechanisms by which HLWDD ameliorates NAFLD, focusing on its impact on lipid metabolism, gut microbiota, and amino acid regulation.
Int J Exp Pathol
September 2025
Laboratory of Pharmacobiology, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
Porcine respiratory disease complex (PRDC) is a common syndrome in the modern swine industry worldwide, and its pathogenesis remains unclear to date. Our study aimed to investigate PRDC-induced pulmonary fibrosis and sphingolipid metabolism, and their relationship. Mouse and cell line (A549 and 3D4/21) models exposed to bleomycin and/or transforming growth factor-β1 (TGF-β1) were developed.
View Article and Find Full Text PDFJ Neuromuscul Dis
August 2025
Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
Background: Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder that progressively affects motor neurons. Gain-of-function mutations in serine palmitoyltransferase (SPT) genes, notably and , have been linked to juvenile ALS. Here, we describe two childhood-onset ALS cases with distinct SPTLC2 mutations, providing new insights into sphingolipid dysregulation and its role in ALS pathogenesis.
View Article and Find Full Text PDFJ Physiol Biochem
August 2025
Graduate Program in Nutrition Sciences, Hospital Universitário Antônio Pedro, Fluminense Federal University (UFF), Rua Marquês do Paraná nº 303, 4º andar, Niterói, Rio de Janeiro (RJ), 24033 900, Brazil.
Ceramides are sphingolipids formed from fatty acids linked to sphingosine and an amide, which are involved in cellular pathways such as apoptosis, fibrosis, oxidative stress, and inflammation. Six distinct fatty acyl selective ceramide synthases (CerS) produce ceramides. This specific enzymatic modulation can either increase or reduce the production of specific ceramides, which can have either adverse or protective effects, suggesting that enzymatic modulation may serve as a tool for innovative therapy.
View Article and Find Full Text PDF