Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Huanglian Wendan Decoction (HLWDD), a classical traditional Chinese medicine (TCM) formula, has shown therapeutic promise in treating metabolic disorders. However, its underlying mechanisms against non-alcoholic fatty liver disease (NAFLD) remain unclear.
Objective: This study aimed to elucidate the pharmacological mechanisms by which HLWDD ameliorates NAFLD, focusing on its impact on lipid metabolism, gut microbiota, and amino acid regulation.
Methods: A NAFLD rat model was established by administering a high-sugar, high-fat, high-salt diet for 20 weeks. The core components of HLWDD were identified and quantified using UPLC-Q-TOF-MS/MS and HPLC, and further validated via network pharmacology and molecular docking. Therapeutic efficacy was assessed through analysis of body weight, serum lipid profiles, inflammatory cytokines, hepatic histology, and protein expression. Gut microbiota composition and liver-intestine metabolite profiles were evaluated using metagenomic sequencing and LC-MS/MS.
Results: Seven key constituents, including quercetin and berberine, were quantified (15.11-164.37 μg/mL) and shown to interact with lipid metabolism targets such as liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPARα), and carnitine palmitoyltransferase 1A (CPT1A). HLWDD treatment significantly reduced body weight, hepatic lipid accumulation, and serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol, while increasing high-density lipoprotein cholesterol. Proinflammatory cytokines (IL-6, IL-1β, TNF-α) were notably suppressed. Mechanistically, HLWDD activated the LKB1/AMPK signaling pathway and modulated aspartic acid metabolism in association with increased abundance of Akkermansia in the gut. Metabolomic analysis identified 13 differential metabolites, with aspartic acid showing strong correlations with Akkermansia and LKB1/AMPK activity.
Conclusion: HLWDD exerts its anti-NAFLD effects by enhancing Akkermansia-mediated aspartate metabolism, thereby activating the LKB1/AMPK axis and promoting lipid oxidation via CPT1A and PPARα. This study provides new mechanistic insight into the gut-liver axis in NAFLD and highlights HLWDD as a multi-targeted therapeutic approach for restoring metabolic balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404375 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0331303 | PLOS |