Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Differentiable rendering techniques have recently shown promising results for free-viewpoint video synthesis of characters. However, such methods, either Gaussian Splatting or neural implicit rendering, typically necessitate per-subject optimization which does not meet the requirement of real-time rendering in an interactive application. We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting. To this end, we introduce Gaussian parameter maps defined on the source views and directly regress Gaussian properties for instant novel view synthesis without any fine-tuning or optimization. We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable with both depth and rendering supervision or with only rendering supervision. We further introduce a regularization term and an epipolar attention mechanism to preserve geometry consistency between two source views, especially when neglecting depth supervision. Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed. Our project page is available at https://yaourtb.github.io/GPS-Gaussian+.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2025.3561248DOI Listing

Publication Analysis

Top Keywords

gaussian splatting
12
rendering
8
gaussian parameter
8
parameter maps
8
source views
8
rendering supervision
8
gaussian
6
gps-gaussian+ generalizable
4
generalizable pixel-wise
4
pixel-wise gaussian
4

Similar Publications

Intelligent Defect Detection of Ancient City Walls Based on Computer Vision.

Sensors (Basel)

August 2025

School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434100, China.

As an important tangible carrier of historical and cultural heritage, ancient city walls embody the historical memory of urban development and serve as evidence of engineering evolution. However, due to prolonged exposure to complex natural environments and human activities, they are highly susceptible to various types of defects, such as cracks, missing bricks, salt crystallization, and vegetation erosion. To enhance the capability of cultural heritage conservation, this paper focuses on the ancient city wall of Jingzhou and proposes a multi-stage defect-detection framework based on computer vision technology.

View Article and Find Full Text PDF

As XR technology continues to advance rapidly, 3D generation and editing are increasingly crucial. Among these, stylization plays a key role in enhancing the appearance of 3D models. By utilizing stylization, users can achieve consistent artistic effects in 3D editing using a single reference style image, making it a user-friendly editing method.

View Article and Find Full Text PDF

Real-time and realistic reconstruction of 3D dynamic surgical scenes from surgical videos is a novel and unique tool for surgical planning and intraoperative guidance. The 3D Gaussian splatting (GS), with its high rendering speed and reconstruction fidelity, has recently emerged as a promising technique for surgical scene reconstruction. However, existing GS-based methods still have two obvious shortcomings for realistic reconstruction.

View Article and Find Full Text PDF

Optimization-based approaches, such as score distillation sampling (SDS), show promise in zero-shot 3D generation but suffer from low efficiency, primarily due to the high number of function evaluations (NFEs) required for each sample and the limitation of optimization confined to latent space. This paper introduces score-based iterative reconstruction (SIR), an efficient and general algorithm mimicking a differentiable 3D reconstruction process to reduce the NFEs and enable optimization in pixel space. Given a single set of images sampled from a multi-view score-based diffusion model, SIR repeatedly optimizes 3D parameters, unlike the single-step optimization in SDS.

View Article and Find Full Text PDF

Monitoring space objects is crucial for space situational awareness, yet reconstructing 3D satellite models from ground-based telescope images is super challenging due to atmospheric turbulence, long observation distances, limited viewpoints, and low signal-to-noise ratios. In this paper, we propose a novel computational imaging framework that overcomes these obstacles by integrating a hybrid image pre-processing pipeline with a joint pose estimation and 3D reconstruction module based on controlled Gaussian Splatting (GS) and Branch-and-Bound (BnB) search. We validate our approach on both synthetic satellite datasets and on-sky observations of China's Tiangong Space Station and the International Space Station, achieving robust 3D reconstructions of low-Earth orbit satellites from ground-based data.

View Article and Find Full Text PDF