Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The significant demand for medicinal plants with special efficacy has prompted us to adopt appropriate processing methods to enhance the nutritional quality and flavor of raw materials. This study evaluated the impacts of freeze-drying (FD), hot-air drying (HAD), and spray drying (SD) on the bioactive compounds, flavor characteristics, and inhibition of starch digestion in mulberry leaf ethanol extract (MLE). Results indicated that FDMLE exhibited the highest total alkaloids content (TAC: 0.14 ± 0.02 mg/g) and total flavonoid content (TFC: 19.32 ± 0.58 mg/g), along with significant inhibitory effects on starch hydrolysis at 180 min (starch hydrolysis rate <50%). The microstructure of HADMLE was closest to that of the mulberry leaf powder (ML), but SD better preserved the color of ML (Δ = 1.55 ± 0.04). Combined with the electronic nose and gas chromatography-ion mobility spectrometry (GC-IMS) found HAD processing facilitated the conversion of flavor precursors in ML into Ethyl formate, rose oxide, and (Z)-3-hexenol (M). SDMLE contained higher levels of pentanal, (E)-2-hexenal (D), (E)-2-pentanone, 3-Methyl-2-butenal (D), ethyl butyrate, and 1-penten-3-one (D). FDMLE exhibited the highest diversity of novel volatile compounds (VOCs), with 18 newly identified species. In conclusion, FD is a potential method to effectively reduce the degradation of quality and efficacy of MLE during the drying process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941107PMC
http://dx.doi.org/10.3390/foods14060998DOI Listing

Publication Analysis

Top Keywords

inhibition starch
8
starch digestion
8
digestion mulberry
8
mulberry leaf
8
starch hydrolysis
8
effects drying
4
drying processes
4
processes bioactive
4
bioactive components
4
components volatile
4

Similar Publications

Injectable Plant Phosphate Coordination Compound-Based Adhesive Hydrogel Accelerates Osteoporotic Fracture Healing by Restoring Osteoclast/Osteoblast Imbalance.

ACS Nano

September 2025

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer

Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).

View Article and Find Full Text PDF

Mitigative effects of carboxymethyl chitosan on the deterioration of gliadin tractility in frozen rice dough during frozen storage.

Food Chem X

August 2025

School of Life Science, Anqing Normal University, Jixian North Road1318, Yixiu District, Anqing 246052, Anhui Province, China.

Frozen storage deteriorates the texture and digestibility of frozen rice dough by damaging gliadin structure and starch integrity. This study investigated carboxymethyl chitosan (CMCh) and sodium carboxymethyl cellulose (CMCNa) as cry-oprotectants to mitigate these effects. Comprehensive analysis utilizing nuclear magnetic resonance (NMR), texture profile analysis (TPA), dynamic contact angle measurement (DCAT21), reversed-phase high-performance liquid chromatography (RP-HPLC), and circular dichroism (CD) demonstrated that 1.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF

The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.

View Article and Find Full Text PDF

Exploring the effect of Curdlan and xanthan on physicochemical properties and multiscale structure of rice starch during extrusion.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. Electronic address:

Hydrocolloids are utilized in starch-based foods for water-holding, thickening, and gelation, yet their molecular interactions with starch in extrusion systems remain underexplored; this study evaluates physicochemical and multiscale structural changes in extruded starch incorporating curdlan (CG) and xanthan (XG). Incorporation of CG and XG significantly counteracted the disruption of the multiscale structure of starch caused by the extrusion treatment, and increased the content of resistant starch. It reduced the content of rapidly digestible starch in extruded starch by 4.

View Article and Find Full Text PDF