98%
921
2 minutes
20
Osteomyelitis poses substantial therapeutic challenges due to the prevalence of multidrug-resistant bacterial infections and associated inflammation. Current treatment regimens often rely on a combination of corticosteroids and antibiotics, which can lead to complications and impede effective bacterial clearance. In this study, we present CADP-10, a Cecropin A-derived peptide, designed to target methicillin-resistant (MRSA) and multidrug-resistant (MRE), while simultaneously addressing inflammatory responses. CADP-10 self-assembles into nanobacterial net (NBacN) that selectively identify and bind to bacterial endotoxins (LPS and LTA), disrupting membrane integrity and depolarizing membrane potential, which culminates in bacterial death. Importantly, these NBacN are bound to LPS and LTA from dead bacteria, preventing their engagement with TLR receptors and effectively blocking downstream inflammatory pathways. Our assessments of CADP-10 demonstrate good biosafety in both and models. Notably, in a rabbit osteomyelitis model, CADP-10 eliminated MRSA-induced bone infections, mitigated inflammation, and promoted bone tissue regeneration. This research highlights the potential of CADP-10 as a multifunctional antimicrobial agent for the management of infectious inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c18858 | DOI Listing |
ACS Nano
April 2025
Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
Osteomyelitis poses substantial therapeutic challenges due to the prevalence of multidrug-resistant bacterial infections and associated inflammation. Current treatment regimens often rely on a combination of corticosteroids and antibiotics, which can lead to complications and impede effective bacterial clearance. In this study, we present CADP-10, a Cecropin A-derived peptide, designed to target methicillin-resistant (MRSA) and multidrug-resistant (MRE), while simultaneously addressing inflammatory responses.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2019
School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
In recent years, antimicrobial peptides have received increased interest and are potential substitutes for antibiotics. However, natural antimicrobial peptides are always toxic to mammalian cells and usually exhibit weak antibacterial activity, which restrict their wide application. In this study, a novel antibacterial peptide named PEW300 was designed with three mutations to the parental peptide cecropin A.
View Article and Find Full Text PDFMol Plant Microbe Interact
March 1998
Departamento de Genética Molecular, CSIC, Barcelona, Spain.
Cecropins are naturally occurring peptides that play an important role in the immune response of insects. Cecropin A-derived and cecropin A-melittin hybrid peptides, all smaller than the natural compound cecropin A, were synthesized and tested for their ability to inhibit growth of several agronomically important fungal pathogens. We found that an 11-amino-acid sequence, corresponding to the N-terminal amphipathic alpha-helix domain of cecropin A, exhibited antifungal activity.
View Article and Find Full Text PDF