98%
921
2 minutes
20
Infants with severe bronchiolitis (i.e., bronchiolitis requiring hospitalization) face increased risks of respiratory diseases in childhood. We conduct epigenome-wide association studies in a multi-ethnic cohort of these infants. We identify 61 differentially methylated regions in infant blood (<1 year of age) associated with recurrent wheezing by age 3 (170 cases, 318 non-cases) and/or asthma by age 6 (112 cases, 394 non-cases). These differentially methylated regions are enriched in the enhancers of peripheral blood neutrophils. Several differentially methylated regions exhibit interaction with rhinovirus infection and/or specific blood cell types. In the same blood samples, circulating levels of 104 proteins correlate with the differentially methylated regions, and many proteins show phenotypic association with asthma. Through Mendelian randomization, we find causal evidence supporting a protective role of higher plasma ST2 (also known as IL1RL1) protein against asthma. DNA methylation is also associated with ST2 protein level in infant blood. Taken together, our findings suggest the contribution of DNA methylation to asthma development through regulating early-life systemic immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997043 | PMC |
http://dx.doi.org/10.1038/s41467-025-57288-6 | DOI Listing |
Cancer Genet
August 2025
National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India. Electronic address:
Cancer is a complex and heterogeneous disease characterized by the accumulation of genetic and epigenetic alterations that drive uncontrolled cellular proliferation and survival. This review provides a comprehensive overview of key cancer driver genes, including oncogenes such as KRAS and PIK3CA, as well as tumor suppressor genes like TP53, PTEN, and CDKN2A, highlighting their molecular mechanisms and roles across various types of cancer. Leveraging insights from large-scale cancer genome initiatives and whole-genome sequencing, we examine the landscape of somatic mutations and their association with hallmark cancer pathways, including cell cycle regulation, apoptosis, metabolic reprogramming, and immune evasion.
View Article and Find Full Text PDFSemin Hematol
August 2025
Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM, gGmbH), Heidelberg, Germany.
Acute myeloid leukemia (AML) is an aggressive blood cancer in which disease initiation and relapse are driven by leukemic cells with stem-like properties, known as leukemic stem cells (LSCs). The LSC compartment is highly heterogenous and this contributes to differences in therapy response. This heterogeneity is determined by genetic and nongenetic factors including somatic mutations, the cell of origin, transcriptional and epigenetic states as well as phenotypic plasticity.
View Article and Find Full Text PDFAllergy
September 2025
2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland.
Nonsteroidal anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (N-ERD) is a mainly type 2 inflammatory condition that combines asthma, nasal polyps, and hypersensitivity to NSAIDs. Its pathogenesis involves both upper and lower airways, yet most studies to date have examined these compartments separately. It remains unclear whether the molecular mechanisms in the nose, sinuses, and lungs are distinct or overlapping-an important gap, given that clinical manifestations of N-ERD involve both sites.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
September 2025
Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University & State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
Non-syndromic cleft palate only is one of the most common congenital craniofacial malformations, arising from complex interactions between genetic and environmental factors. In recent years, animal models have been extensively utilized in cleft palate research, especially in conjunction with multi-omics technologies such as single-cell RNA sequencing, transcriptomics, proteomics, and epigenomics. These approaches have revealed multidimensional molecular mechanisms underlying cleft palate formation.
View Article and Find Full Text PDFNutr Metab Cardiovasc Dis
July 2025
Precision Nutrition and Cardiometabolic Health, IMDEA-Nutrition, Campus of International Excellence (CEI) UAM+CSIC, 28049, Madrid, Spain; Biomedical Research Centre for Obesity Physiopathology and Nutrition Network (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Centre of M
Aims: Cardiovascular disease (CVD) continues to be a leading cause of morbidity and mortality, significantly impacting healthcare systems and individual lives. This pragmatic review focuses on the assessment of CVD utilizing traditional and emerging risk factors that provide a basis for personalized medicine and precision nutrition, highlighting the knowledge and application of these insights for accurate risk diagnosis, individualized interventions, and precise outcome/evaluation prognosis.
Data Synthesis: Critical biochemical markers such as lipid metabolism signatures, inflammatory molecules, endocrine mediators, homeostatic signals (including omics data), and lifestyle factors such as unhealthy dietary habits, physical inactivity, smoking, alcohol abuse, along with anthropometric variables and body composition measurements, play a pivotal role in assessing and managing CVD.