98%
921
2 minutes
20
The marine environment is grappling with microplastic (MP) pollution, necessitating an understanding of its distribution patterns, influencing factors, and potential ecological risks. However, the vast area of the ocean and budgetary constraints make conducting comprehensive surveys to assess MP pollution impractical. Interpretable machine learning (ML) offers an effective solution. Herein, we used four ML algorithms based on MP data calibrated to the size range of 20-5000 μm and considered various factors to construct a robust predictive ML model of marine MP distribution. Interpretation of the ML model indicated that biogeochemical and anthropogenic factors substantially influence global marine MP pollution, while atmospheric and physical factors exert lesser effects. However, the extent of the influence of each factor may vary within specific marine regions and their underlying mechanisms may differ across regions. The predicted results indicated that the global marine MP concentrations ranged from 0.176 to 27.055 particles/m and that MPs in the 20-5000-μm size range did not pose a potential ecological risk. The interpretable ML framework developed in this study covered MP data preprocessing, MP distribution prediction, and interpretation of the influencing factors of MPs, providing an essential reference for marine MP pollution management and decision making.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c12227 | DOI Listing |
Arch Environ Contam Toxicol
September 2025
Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX, 77553, USA.
Karst water bodies are vital groundwater resources particularly vulnerable to pollution. Protecting their water quality requires documenting contaminants traditionally associated with anthropogenic activities (metals, nutrients, and fecal indicator bacteria) as well as emerging contaminants, such as antibiotic-resistant organisms (AROs) and perfluoroalkyl substances (PFAS). This study detected contaminants in karst-associated water bodies on the Yucatán Peninsula, including 10 sinkholes (cenotes) and one submarine groundwater discharge (SGD) site.
View Article and Find Full Text PDFNPJ Antimicrob Resist
September 2025
Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.
Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).
View Article and Find Full Text PDFSci Rep
September 2025
Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Sendai Aoba-ku, Miyagi, 980-8576, Japan.
Petit-spot volcanism plays a critical role in the metasomatism of oceanic plates prior to subduction and in their recycling into the deep mantle. The extent of metasomatism depends on the number and volume of petit-spot volcanic edifices and intrusions, making precise identification of petit-spot volcanic fields essential. However, conventional methods based on seafloor topography and acoustic backscatter intensity alone have limitations in accurately delineating these features.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFBiol Lett
September 2025
Sea Power Reinforcement·Security Research Department, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea.
Passive acoustic monitoring is an observation method for detecting and characterizing ocean soundscapes, and it has recently been used to observe underwater marine life. The brown croaker () is an important fish species in the Northwest Pacific Ocean that produces biological sounds. In this study, the sounds of 150 adult brown croakers were recorded continuously for three weeks using a self-recording hydrophone.
View Article and Find Full Text PDF