Dynamic modeling of astrocyte-neuron interactions under the influence of Aβ deposition.

Cogn Neurodyn

School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710119 China.

Published: December 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-amyloid (Aβ) protein accumulation is recognized as a key factor in Alzheimer's disease (AD) pathogenesis. Its effects on astrocyte function appear primarily as disturbances to intracellular calcium signaling, which, in turn, affects neuronal excitability. We propose an innovative neuron-astrocyte interaction model to examine how Aβ accumulation influences astrocyte calcium oscillation and neuronal excitability, emphasizing its significance in AD pathogenesis. This comprehensive model describes not only the response of the astrocyte to presynaptic neuron stimulation but also the release of the downstream signaling glutamate and its consequential feedback on neurons. Our research concentrates on changes within two prominent pathways affected by Aβ: the creation of Aβ astrocyte membrane pores and the enhanced sensitivity of ryanodine receptors. By incorporating these adjustments into our astrocyte model, we can reproduce previous experimental findings regarding aberrant astrocyte calcium activity and neural behavior associated with Aβ from a neural computational viewpoint. Within a specified range of Aβ influence, our numerical analysis reveals that astrocyte cytoplasmic calcium rises, calcium oscillation frequency increases, and the time to the first calcium peak shortens, indicating the disrupted astrocyte calcium signaling. Simultaneously, the neuronal firing rate and cytosolic calcium concentration increase while the threshold current for initiating repetitive firing diminishes, implying heightened neuronal excitability. Given that increased neuronal excitability commonly occurs in early AD patients and correlates with cognitive decline, our findings may highlight the importance of Aβ accumulation in AD pathogenesis and provide a theoretical basis for identifying neuronal markers in the early stages of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985881PMC
http://dx.doi.org/10.1007/s11571-025-10246-wDOI Listing

Publication Analysis

Top Keywords

neuronal excitability
16
astrocyte calcium
12
8
astrocyte
8
calcium
8
calcium signaling
8
aβ accumulation
8
calcium oscillation
8
neuronal
6
dynamic modeling
4

Similar Publications

Restoring Synaptic Balance in Schizophrenia: Insights From a Thalamo-Cortical Conductance-Based Model.

Schizophr Bull

September 2025

Department of Psychology, Faculty of Health & Life Sciences, University of Exeter, Exeter, EX4 4QG, United Kingdom.

Background And Hypothesis: The dysconnectivity hypothesis of schizophrenia suggests that atypical neural communication underlies the disorder's diverse symptoms. Building on this framework, we propose that specific synaptic disturbances within thalamo-cortical circuits contribute to an imbalance in excitation and inhibition, leading to alteration in oscillations. Our study investigates these alterations and explores whether synaptic restoration can remediate neural activity of schizophrenia and align it with healthy patterns.

View Article and Find Full Text PDF

Functional synapses between neurons and small cell lung cancer.

Nature

September 2025

Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.

View Article and Find Full Text PDF

Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.

View Article and Find Full Text PDF

The plasma membrane acts as a capacitor that plays a critical role in neuronal excitability and signal propagation. Neuronal capacitance is proportional to the area of the cell membrane, thus is often used as a measure of cell size that is assumed to be relatively stable. Recent work proposes that the capacitance of dentate granule cells and cortical pyramidal cells changes across the light-dark cycle in a manner that alters synaptic integration.

View Article and Find Full Text PDF

Migraine is a complex neurological disorder influenced by multiple genetic susceptibility factors, yet current animal models fail to fully recapitulate its human-specific pathophysiology. In this study, we explored the potential mechanisms underlying migraine by examining functional abnormalities and molecular dysregulation in glutamatergic neurons derived from induced pluripotent stem cells (iPSCs) of migraine patients. As key excitatory cells in the central nervous system, glutamatergic neurons are implicated in migraine through altered excitability, ion channel dysfunction, and dysregulation of nociceptive signaling molecules.

View Article and Find Full Text PDF