Efficient Recovery of Waste Cotton Fabrics Using Ionic Liquid Methods.

Polymers (Basel)

College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cotton fiber, renewable natural cellulose, make up the largest portion of textile waste. The ionic liquid method has been successfully employed to regenerate waste colored cotton fabric in this study, offering a comprehensive approach to the recycling of waste cotton. The chemical recovery process for reclaimed cellulose materials is crucial for high-value recycling of waste cotton fabrics. In this study, waste and new, colored and white cotton fabrics were used as experimental subjects. The breaking strength, degree of polymerization, iodine adsorption equilibrium value, and crystallinity between old and new fabrics were investigated. Ionic liquid 1-allyl-3-methylimidazole chloride ([AMIM]Cl) and zinc chloride (ZnCl) were selected to dissolve decolorized waste cotton fabric. Optimal conditions for dissolving the fabric using [AMIM]Cl were investigated. The best dissolution conditions identified were DMSO at a ratio of 1:1 with a dissolution temperature of 110 °C over a duration of 120 min. Additionally, the optimal film formation parameters included a solution concentration of 6%, solidification time of 3 min, and solidification bath temperature of 0 °C. Regenerated cellulose films from both the ionic liquid system (A-film) and zinc chloride system (Z-film) were prepared. The characteristics of the film produced using the most advanced technology were systematically investigated and evaluated. The results of this study provide a crucial theoretical foundation for the recovery and regeneration of waste cotton fabrics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991401PMC
http://dx.doi.org/10.3390/polym17070900DOI Listing

Publication Analysis

Top Keywords

waste cotton
20
cotton fabrics
16
ionic liquid
16
waste
8
cotton
8
waste colored
8
cotton fabric
8
recycling waste
8
zinc chloride
8
fabrics
5

Similar Publications

This study investigated the pyrolysis of mixed medical waste (MMW) in an indirectly heated rotary kiln, focusing on the effects of operating parameters (filling ratio, heat source temperature, and rotation speed) on the heat transfer performance and product distribution. The pyrolysis behaviors of individual components (cotton swabs, paper, bandages, and plastics) and their composite mixtures were characterized using thermogravimetric-differential thermal analysis (TG-DTA). The heat transfer characteristics, chemical reaction properties, kiln operating parameters, and interactions between the processes were also investigated.

View Article and Find Full Text PDF

Study Objective: To quantify and characterize waste generated in robotic gynecologic surgery and assess its environmental impact, with the goal of identifying strategies to reduce waste and improve sustainability.

Design: Waste audit and life cycle impact assessment of robotic gynecologic surgery.

Setting: Single academic institution.

View Article and Find Full Text PDF

Hemp stalk, a widely available agricultural waste, is an ideal eco-friendly raw material for biochar production. Carbonization experiments were conducted as a novel approach for the scalable and value-added utilization of hemp stalk under oxygen-exclusion conditions. The effects of feedstock types- (KS), spp.

View Article and Find Full Text PDF

Given the environmental significance of the textile industry, especially the accumulation of nondegradable materials, there is extensive development of greener approaches to fabric waste management. Here, we investigated the biodegradation potential of three strains in model compost on polyamide (PA) and polyamide-elastane (PA-EA) as synthetic, and on cotton (CO) as natural textile materials. Weight change of the materials was followed, while Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to analyze surface changes of the materials upon biodegradation.

View Article and Find Full Text PDF

To rationally utilize and develop agricultural waste products, this research involved the synthesis of degradable high water-absorbing resin through the graft copolymerization of cotton straw (CS) with monomers. Among them, acrylic acid (AA) and acrylamide (Am) are used as grafting copolymer monomers, cellulose in the straw serves as the network framework, and MBA acts as the crosslinking agent. Co gamma rays as initiators.

View Article and Find Full Text PDF