Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Olefin block copolymers (OBCs) are among the most advanced classes of polyolefins, produced in large quantities as part of the approximately 200 million tons of polyolefins produced annually. However, current OBCs manufacturing relies on a complex, costly, two-catalyst process that requires hazardous chain shuttling agents. A more efficient approach using a single catalyst for the synthesis of the OBCs is highly desirable but remains significantly challenging. Traditional olefin copolymerization catalysts typically grow a single polymer chain and are incapable of generating block structures as they fail to incorporate α-olefins with the necessary precision. To achieve block copolymerization, the catalyst must simultaneously accomplish two seemingly contradictory tasks, efficiently and inefficiently incorporating α-olefins into the polymer chain. Here, we introduce a new approach for synthesizing OBCs using a single catalyst. By coupling this catalyst with a regulating agent, we enabled a one-step synthesis of OBCs with tunable hard/soft block ratios and high melting temperatures (∼120 °C). This method offers significant advantages, featuring its operational simplicity, elimination of chain shuttling agents, separate comonomer addition, or adjustments in reaction conditions. Mechanistic studies suggest that alkyl chains act as temporary ligands, dynamically influencing the catalyst's polymerization behavior. This dynamic process allows the catalyst to alternate between efficient and inefficient α-olefin incorporators, thereby facilitating the synthesis of OBCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c18606DOI Listing

Publication Analysis

Top Keywords

single catalyst
12
synthesis obcs
12
olefin block
8
block copolymers
8
polyolefins produced
8
chain shuttling
8
shuttling agents
8
polymer chain
8
obcs
6
block
5

Similar Publications

A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.

View Article and Find Full Text PDF

A theoretical study on doping Pd-like superatoms into defective graphene quantum dots: an efficient strategy to design single superatom catalysts for the Suzuki reaction.

Nanoscale

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.

The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.

View Article and Find Full Text PDF

Modifying cells to achieve desired functions has attracted extensive attention in bioengineering and bio-manufacturing. Approaches based on cell-surface engineering have the potential to endow cells with multiple functions and also create a protective shell around them. However, such shells are generally irreversible and lack functionality, leading to various drawbacks associated with irreversible dynamics.

View Article and Find Full Text PDF

This article presents an advanced iteration of the polyoxometalate (POM)-Ionosolv concept to generate biobased methyl formate in high yield and a bleached cellulose pulp from lignocellulosic biomass in a single-step operation by using redox-balanced POM catalysts and molecular oxygen in alcoholic ionic liquid (IL) mixtures. The performance of the three Ionosolv-ILs triethylammonium hydrogen sulfate ([TEA][HSO]), N,N-dimethylbutylammonium hydrogen sulfate ([DMBA][HSO4]), and tributylmethylphosphonium methyl sulfate ([TBMP][MeSO]), mixed with methanol (MeOH) (30/70 wt%), is evaluated by methyl formate yield from extracted hemicellulose and lignin as well as purity of the bleached cellulose pulp in the presence of various Keggin-type POMs. The redox-balanced HPVMnMoO POM catalyst in [TBMP][MeSO]/MeOH emerge as the most effective combination, achieving 20% methyl formate yield from commercial beech wood.

View Article and Find Full Text PDF

High-entropy metal phosphide nanoparticles for accelerated lithium polysulfide conversion.

Chem Sci

September 2025

School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University Nanning 530004 P. R. China

To overcome the persistent challenges of sluggish lithium polysulfide (LiPS) conversion kinetics and the shuttle effect in Li-S batteries, this work introduces a novel, cost-effective thermal treatment strategy for synthesizing high-entropy metal phosphide catalysts using cation-bonded phosphate resins. For the first time, we successfully fabricated single-phase high-entropy FeCoNiCuMnP nanoparticles anchored on a porous carbon network (HEP/C). HEP/C demonstrates enhanced electronic conductivity and superior LiPS adsorption capability, substantially accelerating its redox kinetics.

View Article and Find Full Text PDF