98%
921
2 minutes
20
Background: Bisphenol S (BPS) is a substitute for bisphenol A in various commercial products and is increasingly used globally due to restrictions on bisphenol A usage. Consequently, there are increasing public health concerns that substantial effects mediated by synthetic chemicals may impact human health. Recently, epidemiology studies reported associations between bisphenol exposure and nonalcoholic fatty liver disease [metabolic dysfunction-associated steatotic liver disease (MASLD)]. However, the causal relationship and the molecular mechanisms affecting hepatocellular functions are still unknown.
Objectives: Our study aimed to understand the molecular mechanism by which BPS exposure caused hepatic lipid deposition.
Methods: C57BL/6J mice were exposed to BPS for 3 months, and its effects were assessed by histology. RNA sequencing (RNA-seq), assay for transposase-accessible chromatin with high-throughout sequencing (ATAC-seq), and cleavage under targets and tagmentation (CUT&Tag) were used to investigate mechanistic details. ATF3 liver-specific knockout mice and cells were used to validate its functions in BPS-induced hepatotoxicity.
Results: Here, mice that were chronically exposed to BPS showed significant lipid deposition in the liver and dyslipidemia and were predisposed to MASLD, accompanied with a reprogrammed liver transcriptional network and chromatin accessibility that was enriched for the Atf3 binding motif. Comparing to the control group, we identified numerous differential Atf3 binding sites associated with signaling pathways integral to lipid catabolism and synthesis in the BPS exposure group, resulting in a drastic surge in lipid accumulation. Moreover, knocking out Atf3 and significantly attenuates BPS-induced hepatic lipid accumulation via the regulation of chromatin accessibility and gene expression. Besides, inhibiting JunB also eliminates BPS-induced Atf3 upregulation and lipid accumulation.
Conclusion: Our study reveals a novel mechanism, through which BPS upregulates JunB and Atf3 to impair hepatic lipid metabolism, and provides new insights into the hepatotoxicity of BPS. https://doi.org/10.1289/EHP17057.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077661 | PMC |
http://dx.doi.org/10.1289/EHP17057 | DOI Listing |
Mol Nutr Food Res
September 2025
Center For Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.
Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.
View Article and Find Full Text PDFToxicol Mech Methods
September 2025
Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, India.
Tuberculosis, caused by , persists as a significant worldwide health issue, resulting in millions of infections and fatalities each year. Treatment predominantly depends on first-line antibiotics, including Isoniazid (INH) and Rifampicin (RIF). Nevertheless, extended use of these medications is linked to considerable adverse effects, leading to various organ toxicities, especially hepatotoxicity and nephrotoxicity.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China. Electronic address:
Epoxiconazole (EPX) is widely applied to control various fungal diseases in crops. However, the toxicological effects of EPX on reptiles remain unknown, especially at the enantiomer level. In this study, lizards were repeatedly exposed to rac-EPX, (+)-EPX, and (-)-EPX at doses of 10 and 100 mg/kg bw for 21 days.
View Article and Find Full Text PDFHelicobacter
September 2025
Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Several clinical studies have demonstrated that Helicobacter pylori (Hp) infection may exacerbate the progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD); however, the underlying mechanisms remain unclear. This study aims to investigate the characterization of the gastric microbiome and metabolome in relation to the progression of MASLD induced by Hp infection.
Methods: We established a high-fat diet (HFD) obese mouse model, both with and without Hp infection, to compare alterations in serum and liver metabolic phenotypes.
J Steroid Biochem Mol Biol
September 2025
Biochemistry and Phytochemistry Research Division, Jubilee Centre for Medical Research, Thrissur, Kerala, 680005, India. Electronic address:
7-Ketocholesterol (7-KC) is a biologically active oxysterol formed through the oxidation of cholesterol, predominantly under conditions of oxidative stress. It is generated both enzymatically in specific tissues such as the brain and liver, and non-enzymatically via reactive oxygen species (ROS), especially in aging tissues and heat-processed animal-derived foods. 7-KC exerts multifaceted effects on human health, extending beyond lipid metabolism to disrupt glucose and amino acid utilization, impair mitochondrial function, and provoke endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDF