Evaluating the Mechanism Underlying Multi-Compound Synergy of Banxia Decoction in the Treatment of Hashimoto's Thyroiditis Based on Network Pharmacology and Molecular Docking.

Int J Gen Med

Department of Breast Surgery, Digestive Disease Medical Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 412000, People's Republic of China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: We aimed to utilize network pharmacological analysis and molecular docking to elucidate the potential mechanisms of Banxia Decoction (BD) action in the treatment of Hashimoto's thyroiditis (HT).

Materials And Methods: Active compounds and HT-related targets were predicted using databases and the intersection of the results was taken. STRING and DAVID 6.8 tools were used to obtain the protein-protein interaction (PPI) network and perform GO and KEGG evaluations, respectively. Discovery Studio 2017 R2 was utilized to perform molecular docking and RT-qPCR was conducted to confirm hub gene expressions in clinical samples.

Results: A total of 136 active compounds in BD were screened, and 74 potential targets related to HT were identified in BD. Further, 17 key targets in the PPI network were identified and HIF1A, EP300, PRKCA, and TERT were included for subnet analysis. Next, a network of "Chinese medicine-active compound-potential target-signal pathway" was obtained and the HIF-1 signaling pathway was identified as the key pathway. Finally, 8 active compounds and their stable binding to target proteins were confirmed by molecular docking; MAPK3, SRC, TERT, and HIF1A were upregulated in HT relative to the goiter samples.

Conclusion: The integration of network pharmacology and molecular docking provides a systematic framework for exploring the multi-component and multi-target characteristics of BD in HT, underscores the therapeutic potential of BD in HT by targeting genes and pathways involved in immune regulation and oxidative stress. These findings not only enhance our understanding of BD's pharmacological mechanisms but also lay the groundwork for the development of novel therapeutic strategies for HT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972970PMC
http://dx.doi.org/10.2147/IJGM.S502321DOI Listing

Publication Analysis

Top Keywords

molecular docking
20
active compounds
12
banxia decoction
8
treatment hashimoto's
8
hashimoto's thyroiditis
8
network pharmacology
8
pharmacology molecular
8
ppi network
8
identified key
8
network
6

Similar Publications

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

Design and synthesis of novel indolinone Aurora B kinase inhibitors based on fragment-based drug discovery (FBDD).

Mol Divers

September 2025

State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.

Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.

View Article and Find Full Text PDF

This study aimed to synthesize and evaluate the anticancer activity of novel chalcone derivative against colon cancer by in vitro cytotoxicity against HCT-116 (Research Resource Identifiers:CVCL_D4JB) cell line and in vivo using EAC (Research Resource Identifiers: CVCL_1306) and DLA (Research Resource Identifiers: CVCL_VR37) cells inoculated Swiss albino mice. The present study aimed to synthesize the new chalcone derivatives and conduct its anti-colon cancer activity both in vitro and in vivo. The designed compounds were subjected to in silico studies like binding pocket analysis, molecular docking, and ADME studies.

View Article and Find Full Text PDF