98%
921
2 minutes
20
Lithium-oxygen batteries (LOBs) attract widespread attention due to their high energy density and safety. The morphology of the solid discharge product bears a close correlation with the battery capacity. In this work, the capacity of LOBs surprisingly increases from 790 mAh g under the liquid electrolyte to 2395 mAh g by using a quasi-solid-state electrolyte (QSSE). The thin film and spherical LiO under the QSSE system construct new Li transport channels, which help to extend the solid-phase Li transport boundary to the entire electrode to enhance the spatial utilization efficiency of the electrode. Furthermore, a novel mechanism for the growth of LiO is proposed, which is determined by the coupling of the conductivity of Li and electrons within the products and the electrode. The result innovatively reveals a new mechanism for the growth of discharge products and a new model of Li conduction in LOBs under QSSE systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5c00870 | DOI Listing |
ACS Nano
September 2025
Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
Development of aprotic lithium-oxygen (Li-O) batteries suffers from slow cathode reaction kinetics, numerous side reactions, and large polarization, which are intimately related to the discharge product of LiO. Here, we designed and prepared a modified CoO nanoparticle with atomic Ru substitution at octahedral Co sites supported by carbon nanocages (RuCoO@HCNs) as a cathode catalyst. The asymmetrical octahedral Ru-O-Co units trigger a strong electron coupling effect, leading to charge redistribution and optimization of the d-orbital energy levels, thus facilitating oxygen activation and conversion into superoxide anions during discharging.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Energy, Soochow University, Suzhou 215006, China. Electronic address:
The lithium‑oxygen battery (LOB) has emerged as an appropriate candidate for next-generation power supply system, owing to the ultrahigh theoretical energy density (3480 Wh kg) and relatively low cost. However, some intrinsic challenges, including high redox overpotentials, limited rate capability, and poor cyclic life, continue to hinder the practical deployment of lithium‑ oxygen batteries. The fundamental limitations originate from sluggish oxygen reduction/evolution reaction (ORR/OER) kinetics and parasitic side reactions, which can be effectively mitigated by employing efficient cathode electrocatalysts.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, People's Republic of China.
CoS electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction (OER) activity, yet challenges remain in fabricating rechargeable lithium-oxygen batteries (LOBs) due to their poor OER performance, resulting from poor electrical conductivity and overly strong intermediate adsorption. In this work, fancy double heterojunctions on 1T/2H-MoS@CoS (1T/2H-MCS) were constructed derived from the charge donation from Co to Mo ions, thus inducing the phase transformation of MoS from 2H to 1T. The unique features of these double heterojunctions endow the 1T/2H-MCS with complementary catalysis during charging and discharging processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Department of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea. Electronic address:
A composite quasi-solid-state electrolyte (QSE) integrating sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and silicon dioxide (SiO) nanofillers is developed for lithium‑oxygen (Li-O) batteries. The inclusion of SiO nanofillers into the host polymer matrix helps in retaining the liquid electrolyte, enhancing ionic conductivity, mechanical stability, and structural integrity. Sulfonation of PVDF-HFP improves lithium-ion transport, reduces the shuttle effect of the lithium iodide (LiI) redox mediator, and suppresses lithium dendrite growth through uniform lithium deposition.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Advanced Materials Science and Engineering, Mokpo National University 61 Dorim-ri, 1666 Yeongsan-ro, Cheonggye-myeon, Muan-gun 58554 Jeonnam South Korea
The development of high-performance lithium-oxygen (Li-O) batteries is hindered by challenges including high overpotential and limited cycle life. In this paper, we report the cost-effective and scalable synthesis of a ZnO electrocatalyst directly integrated onto carbon paper a simple dipping and thermal treatment method. The resulting ZnO-on-carbon composite (ZnO on P50) was employed as the cathode in a non-aqueous Li-O battery.
View Article and Find Full Text PDF