Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marine macroalgae ecosystems are increasingly recognized as potential contributors to carbon sequestration within blue carbon strategies. This study investigates how the carbon storage capacity of two macroalgal species with different living strategies, Fucus vesiculosus (k-strategy, slow-growing) and Ulva lactuca (r-strategy, fast-growing), respond to the individual or combined impacts of two drivers of global change, eutrophication and marine heatwaves. Differences in growth, biomass and carbon accumulation were assessed after 7 and 14 days in two experiments (field and laboratory) that tested different combinations of nutrient enrichment (increase nutrient/surface area of 1 g/cm in the field experiment and a concentration of 10 ml/l of Provasoli solution in the laboratory) and warming (5 °C increase) treatments. Results revealed that nutrient addition treatments had significant effects, reducing carbon incorporation by up to 22.5 % in F. vesiculosus compared to control. This reduction was particularly evident in the field experiment, suggesting that eutrophication negatively impacts the carbon storage potential of this slow-growing species. However, F. vesiculosus demonstrated greater resilience in maintaining biomass stability, whereas U. lactuca exhibited reduced growth and carbon accumulation under natural conditions. These findings highlight species-specific differences in carbon assimilation and biomass composition among macroalgae, which can influence their potential contribution to carbon cycling and storage in marine ecosystems, shaped by their ecological and physiological traits, and emphasize the importance of nutrient management for optimizing blue carbon storage. This research contributes to our understanding of macroalgae's role in climate mitigation and underscores the need for targeted conservation strategies to enhance their ecosystem services.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2025.107128DOI Listing

Publication Analysis

Top Keywords

carbon storage
12
carbon
11
growth carbon
8
composition macroalgae
8
global change
8
blue carbon
8
carbon accumulation
8
field experiment
8
unveiling growth
4
carbon composition
4

Similar Publications

Performance assessment of reclaimed fly ash-slag geopolymers incorporating waste spent garnet and waste foundry sand under different curing regimes.

Environ Res

September 2025

Materials Science, Engineering, and Commercialization (MSEC) Program, Texas State University, San Marcos, TX-78666, USA; Department of Engineering Technology, Texas State University, San Marcos, TX-78666, USA.

Fly ash (FA) landfills are overflowing with materials, and unexplored waste streams like waste spent garnet (WSG) and waste foundry sand (WFS) are often dumped in onsite storage spaces, limiting land availability for future use and exacerbating environmental concerns related to waste disposal. Therefore, this research proposes recycling FA to produce reclaimed FA (RFA) as a binder, replacing 40-60% of ground granulated blast furnace slag (GGBFS) and 30-50% of river sand (RS) with WSG and WFS to produce geopolymers. The performance of geopolymers was assessed under different curing regimes, including ambient-temperature curing (ATC), ambient-temperature water curing (AWC), high-temperature curing (HTC), and high-temperature water curing (HWC).

View Article and Find Full Text PDF

As the world's largest producer of crude steel, China's iron and steel industry (ISI) is one of the major sources of both air pollutant and carbon dioxide (CO) emissions in the country. To better track emission patterns and assess the synergistic reduction potential under various policies during the 14 Five-Year Plan period, a high-frequency, smokestack-level and national emission database was developed that covers both air pollutants (i.e.

View Article and Find Full Text PDF

Unraveling the GHG emission patterns of inland waters in China: impact of water body types, aquatic plant life forms, and water temperature.

J Environ Manage

September 2025

Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China. Electronic address:

Inland water ecosystems play key roles in the production, transportation, transformation, storage, and consumption of global greenhouse gases (GHG). Different water body types exhibit spatial and temporal differences after considering factors such as season and aquatic plant life forms. The results revealed that the annual global warming potential (GWP) (Tg CO-eq yr) from swamps, rivers, lakes, and reservoirs in China were 1382.

View Article and Find Full Text PDF

Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.

View Article and Find Full Text PDF

Hedgehog-like Pd/Nitride Nanocone Facilitates Bubble Detachment for High-Rate Photothermal Hydrogen Release.

Nano Lett

September 2025

School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China.

The practical application of formic acid for large-scale hydrogen storage is constrained by its low H production rates. Conventional strategies rely on excessive chemical additives to accelerate the initial deprotonation step for efficient dehydrogenation. However, this approach is energy-consuming and compromises the intrinsic hydrogen storage density (53 g L) of formic acid.

View Article and Find Full Text PDF