Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11962945PMC
http://dx.doi.org/10.1016/j.hrcr.2024.12.006DOI Listing

Publication Analysis

Top Keywords

exploring epicardial
4
epicardial arrhythmogenic
4
arrhythmogenic substrates
4
substrates long
4
long syndrome
4
syndrome type
4
type iii
4
iii overlapping
4
overlapping j-wave
4
j-wave syndrome
4

Similar Publications

Thorough Physiological Assessment in Non-Culprit Vessels of Patients with Acute Myocardial Infarction: Is It a Required Action?

Cardiovasc Drugs Ther

September 2025

Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China.

Backgrounds: The management of non-culprit vessels (NCV) among individuals with acute myocardial infarction (AMI) remains an unsolved problem. Angiography-derived physiological assessments developed recently may help address this issue. Our study aims to measure angiography-derived fractional flow reserve (Angio-FFR) and angiography-derived index of microcirculatory resistance (Angio-IMR) in NCVs of AMI patients and explore their prognostic values and necessity.

View Article and Find Full Text PDF

Glial cells are essential regulators of brain homeostasis by orchestrating neuronal function, metabolism and immune responses. However, much less is known about peripheral glial cells, particularly those in the heart. This review explores the development, types and functions of cardiac glial cells, including Schwann cells, satellite glial cells and recently identified cardiac nexus glia, with some reference to their central nervous system counterparts.

View Article and Find Full Text PDF

Background: Identification of significant coronary artery stenosis (CAS) in patients with chronic coronary syndromes (CCS) is crucial for clinical management. Myocardial work (MW) is a new noninvasive method reflecting myocardial metabolism and has been applied in myocardial ischemia. We aimed to explore the value of global MW during vasodilator stress echocardiography in detecting significant CAS.

View Article and Find Full Text PDF

Left atrial epicardial adipose tissue volume quantification by CMR aids identification of patients at low risk for left atrial cardiomyopathy.

Clin Res Cardiol

September 2025

Department for Internal Medicine and Cardiology, Heart Center Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.

Background And Aims: The pathophysiologic concept of atrial fibrillation (AF) has evolved towards defining atrial cardiomyopathy, recognizing inflammation-mediated remodeling of the left atrium (LA) as a source for arrhythmogenesis. One feature of atrial cardiomyopathy is the development of fibrosis, with low-voltage zones (LVZ) identified by invasive electroanatomic mapping as an accepted surrogate parameter. A mediator of pathological remodeling is epicardial adipose tissue (EAT).

View Article and Find Full Text PDF

Obesity is strongly associated with an increased risk of heart failure. Recent studies indicate that epicardial adipose tissue plays a critical role in the development of obesity-related cardiomyopathy. This distinct visceral fat depot, located between the myocardium and the visceral pericardium, is involved in direct cross-talk with the adjacent myocardium, influencing both its structural integrity and electrophysiological function.

View Article and Find Full Text PDF