Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The use of biocatalysis technology to manufacture rare natural products can solve the contradiction between the market demand for rare natural products in large health industry fields and the protection and sustainable development of wildlife resources. However, the currently available research on fungal endophytes, which are great potential resources for glycoside hydrolase biocatalysts, is still insufficient. In this study, endophytic fungi from Epimedium brevicornum Maxim. were isolated in the Qinling Mountains, identified and tested for their potential to biotransform epimedium extracts into minor epimedium flavonoids.
Results: A total of 84 representative morphotype strains were isolated and identified via ITS rDNA sequence analyses and were grouped into 32 taxa. The Shannon‒Wiener index (H', 3.089) indicated that E. brevicornum Maxim. harboured abundant fungal resources. Ten strains showed strong β-glucosidase activity and exhibited the ability to biotransform major epimedium flavonoids into deglycosylated minor epimedium flavonoids, such as baohuoside I and icaritin, via various glycoside-hydrolysing pathways. Among these strains, strains 8509 and F8889, which were initially characterized as Aspergillus ochraceus and A. protuberus, have the potential for further development in the biotransformation of epimedium extracts into minor epimedium flavonoids because of their excellent biosafety, enzyme activity, and enzymatic characteristics. The enzyme activity of the crude enzyme obtained by freeze-drying from the F8509 fermentation broth supernatant reached 78.24 ± 2.48 U/g. Further research revealed that major glycosylated flavonoids from 100 g/L epimedium extracts were bio-transformed completely into minor deglycosylated flavonoids in 90 min after the addition of 1 g/L crude enzyme. In addition, the liquid phase separation conditions were optimized, and ethyl alcohol and water were ultimately used as the mobile phase for efficient separation of the conversion products at equal flow degrees.
Conclusions: This study not only identified a series of candidates for the biotransformation of minor epimedium flavonoids but also provided an efficient purification method. More importantly, this study also demonstrated the important value of endophytes in the biotransformation of rare natural products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966834 | PMC |
http://dx.doi.org/10.1186/s12934-025-02698-w | DOI Listing |