98%
921
2 minutes
20
The adenosine 1 receptor (AR) is a G protein-coupled receptor that transduces signals to regulate sleep-wake cycles and circadian rhythms. Plastic products contain thousands of chemicals, known to disrupt physiological function. Recent research has demonstrated that some of these chemicals are also AR agonists, however, the extent to which such activation propagates downstream and results in cellular alterations remains unknown. Thus, we investigate whether chemicals extracted from polyurethane (PUR) and polyvinyl chloride (PVC) plastics disrupt circadian rhythms via agonism of AR. We confirm that plastic chemicals in both plastics activate AR and inhibit intracellular cAMP in U2OS cells. Notably, this inhibition is comparable to that induced by the highly specific AR agonist 2'-MeCCPA. To assess circadian disruption, we quantify temporal expression patterns of the clock genes PER2 and CRY2 at 4-h intervals over 48 h. Here, exposure to plastic chemicals shifts the phase in the oscillatory expression cycles of both clock genes by 9-17 min. Importantly, these effects are dose-dependent and reversible when AR is inhibited by a pharmacological antagonist. This demonstrates that plastic chemicals can disrupt circadian processes by interfering with AR signaling and suggests a novel mechanism by which these and other chemicals may contribute to non-communicable diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2025.109422 | DOI Listing |
Nanoscale
September 2025
Department of Chemical Sciences, Ariel University, Ariel, Israel.
Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.
View Article and Find Full Text PDFToxicol In Vitro
September 2025
Laboratorio de Biología y Química Atmosféricas. Instituto de Ciencias de la Atmósfera y Cambio Climático. Universidad Nacional Autónoma de México. CDMX, Mexico. Electronic address:
Human activity has led to the increment of diverse pollutants. Plastics have great practical value since they are present in everyday products. However, not only plastics have gained importance, but their plasticizers such as bisphenol A (BPA), phthalates and other chemicals such as the polyaromatic hydrocarbon compounds (PAHs) have described to impact in human and animal health because of its chronic exposure and that they are endocrine disruptors (EDs).
View Article and Find Full Text PDFLuminescence
September 2025
School of Textile Science and Engineering, Wuyi University, Jiangmen, Guangdong, China.
Acidochromic fluorescent membranes have garnered significant research interest owing to their potential in real-time environmental monitoring and smart sensing applications. However, the rational design of membranes to optimize their structure-property interplay for enhanced acidochromic performance remains further explored. Herein, we prepared various stimulus-responsive micro/nanofibrous membranes using electrospinning technology by incorporating a fluorescent small molecule (TPECNPy-2) with thermoplastic polyurethane (TPU) to obtain specific properties.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China. Electronic address:
This study introduces a novel bio-based flame retardant, MCC-GMA-PA-MEL, synthesized from microcrystalline cellulose (MCC) modified with phytic acid (PA) and melamine (MEL). Characterization of the resulting composites revealed a significant enhancement in PLA crystallinity to 35.9 %, driven by improved molecular mobility and heterogeneous nucleation effects.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo 315201,
Microplastics (MPs) have emerged as widespread environmental pollutants in aquatic ecosystems, primarily due to the extensive use of plastic products, their persistent nature, and improper disposal methods. It is essential to develop effective purification methods to treat the hazardous MPs in water. Chitin and chitosan (CS) have gained attention as promising adsorbents for MPs because of their low cost, abundance, biodegradability, and the presence of functional groups such as amino and hydroxyl groups, which facilitate the removal of various toxins from wastewater.
View Article and Find Full Text PDF