Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acoustic levitation in air and contactless coalescence of levitated droplets using acoustic forces are of great significance to chemical and biological reactions. The state-of-the-art is levitation and coalescence of 3 pairs of droplets achieved via dual-side phased arrays. However, there are no reports on the general design principles for manipulation and coalescence of > 3 pairs of droplets. Equally, there are no reports on sequential coalescence of more than two columns of droplets, which is essential for performing reactions requiring addition of more than two reagents. In this paper, we showed that wide traps are more suited than narrow traps for the coalescence of droplets. In wide traps, the acoustic energy was expanded along the direction of merging of droplets. Additionally, uniform traps created in this work by distributing energy between traps increased the number of droplets that can be levitated. We have reported a new algorithm named DS-PAT based on direct search method to overcome the limitations of existing algorithms. Using wide uniform traps and the DS-PAT algorithm, for the first time, a stable coalescence of up to 6 pairs of levitated droplets was achieved. To measure experimental acoustic fields during the merging process, a custom-built acoustic scanning setup was employed, which showed good consistency with simulations. Subsequently, DS-PAT was used to design the sequential coalescence of 4 columns of droplets with 2 droplets in each column. This was then applied to study the well-known oscillatory Belousov-Zhabotinsky (BZ) reaction. This work gives general principles of designing acoustic fields for stable coalescence of columns of droplets and introduces a global algorithm for dual-side phased arrays, paving the way for stable and efficient chemical and biological reactions in airborne droplets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999590PMC
http://dx.doi.org/10.1016/j.ultsonch.2025.107327DOI Listing

Publication Analysis

Top Keywords

droplets
13
levitated droplets
12
dual-side phased
12
phased arrays
12
coalescence columns
12
columns droplets
12
coalescence
9
pairs levitated
8
chemical biological
8
biological reactions
8

Similar Publications

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF

Fatty acid-binding protein 4 (FABP4) is a cytosolic lipid chaperone predominantly expressed in adipocytes. It has been shown that targets adipose tissues and resides in adipocytes. However, how manipulates adipocytes to redirect nutrients for its benefit remains unknown.

View Article and Find Full Text PDF

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

In mammals, cholesterol accumulation in tissues often results in health damage, such as oxidative stress. In contrast, the adverse effects of cholesterol accumulation on the physiological health of fish remain largely unexplored. The present study investigated the impacts of cholesterol accumulation on oxidative stress and the potential mechanisms involved in Nile tilapia ().

View Article and Find Full Text PDF

3D-Printed Microfiltration Membranes via Dual-Wavelength Microstereolithography.

ACS Omega

September 2025

Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629HS, The Netherlands.

A new and sustainable membrane manufacturing method is 3D printing, which reduces the number of fabrication steps, waste production, and the corresponding CO emissions. It further enables fabricating membranes with well-defined pore size, shape, and configuration. Here, we study 3D printing of microfiltration membranes using a novel dual-wavelength microstereolithography method.

View Article and Find Full Text PDF