98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jalm/jfaf028 | DOI Listing |
PLoS One
September 2025
Department of Biological Sciences, University of Limerick, Limerick, Ireland.
This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.
View Article and Find Full Text PDFActa Parasitol
September 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
Purpose: This study aimed to identify and analyze the role of Ferric reductase inBlastocystis sp. subtype 2 (ST2) and explore the relationship between the parasite and iron metabolism.
Methods: The location of Ferric reductase in Blastocystis sp.
ACS Sens
September 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
Alpha-2-macroglobulin (A2M) is a critical biomarker implicated in inflammation, immune regulation, coagulation, and various pathological conditions such as liver fibrosis, neurodegenerative diseases, and cancers. However, its precise quantification remains challenging due to complex conformational dynamics, subtle abundance fluctuations, and interference from plasma proteins. Here, we present a label-free dynamic single-molecule sensing (LFDSMS) strategy for the sensitive and specific detection of A2M.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
DDX6 is known to repress messenger RNA (mRNA) translation and promote mRNA decay in microRNA-mediated silencing. In embryonic stem cells (ESCs), DDX6 primarily functions at the translation level, independent of mRNA destabilization; however, the precise molecular mechanism of how DDX6 represses translation remains unclear. Here, we identify DDX3X as a key downstream target of DDX6-mediated translational repression in ESCs.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Japan.
Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.
View Article and Find Full Text PDF