98%
921
2 minutes
20
Key bottlenecks of the persulfate-based advanced oxidation processes (AOPs) are the high dosage of persulfate and the secondary pollution of sulfate ion. In this work, a sustainable strategy involving the transformation of diatomite into a water purification catalyst consisting of nano-size pore enrichment and silico-oxygen bonding (Si/C@BD) was proposed. Results indicated that the pollutants with electron-donating groups can be quickly degraded by the Si/C@BD via amplified electron transfer process (ETP) under very low peroxymonosulfate (PMS) usage. Such "low-oxidant-consumption" Fenton-like chemistry can be also applied to other catalytic systems derived from a series of silicon-based materials. In addition, a pilot-scale device (54 L) based on ETP pathway was constructed, which provided a universal strategy to prevent direct contact of treated wastewater with oxidation additives, thereby solving the bottleneck of secondary pollution caused by sulfate dissolution associated with PMS oxidation systems. In addition, the Si/C@BD/PMS system exhibited the superior environmental significance and feasibility based on the quantitative analysis via the life cycle assessment (LCA). This work will be a significant contribution to the persulfate-based Fenton-like chemistry, emphasizing the low-persulfate-consumption and free-secondary-pollution characteristics with significant application value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2025.123550 | DOI Listing |
ACS Appl Bio Mater
September 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.
View Article and Find Full Text PDFLangmuir
September 2025
Laboratory of Electrochemistry-Corrosion, Metallurgy and Inorganic Chemistry, Faculty of Chemistry, USTHB, BP 32, 16111, Algiers, Algeria.
Azo dyes, prevalent in various industries, including textile dyeing, food, and cosmetics, pose significant environmental and health risks due to their chemical stability and toxicity. This study introduces the synthesis and application of a copper hydrogen-π-bonded benzoate framework (Cu-HBF) and its derived marigold flower-like copper oxide (MFL-CuO) in a synergetic adsorption-photocatalytic process for efficiently removing cationic azo dyes from water, specifically crystal violet (CV), methylene blue (MB), and rhodamine B (RhB). The Cu-HBF, previously available only in single crystal form, is prepared here as a crystalline powder for the first time, using a low-cost and facile procedure, allowing its application as an adsorbent and also serving as a precursor for synthesizing well-structured copper oxide (MFL-CuO).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China. Electronic address:
Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Korea University, Seoul, 02841, South Korea.
Chemodynamic therapy (CDT), leveraging Fenton reactions to generate hydroxyl radicals (•OH) from intracellular hydrogen peroxide (HO), offers a promising cancer treatment strategy due to its high specificity and low systemic toxicity. However, the targeted delivery of •OH-producing prodrugs using covalent organic frameworks (COFs) remains a significant challenge. Here, we report a mitochondria-targeted COF-based nano prodrug, COF-31@P, designed for enhanced CDT efficacy.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Ultrasonic Imaging, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China.
Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.
View Article and Find Full Text PDF