A two-dimensional amorphous VOPO/graphene heterostructure for high-voltage aqueous Zn-ion batteries.

Chem Commun (Camb)

Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, P. R. China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A novel two-dimensional (2D) amorphous VOPO/graphene (A-VOP/G) heterostructure, which features rapid ion diffusion pathways, numerous active sites, high conductivity, and superior stability, serves as a high-voltage cathode for zinc-ion batteries (ZIBs). The A-VOP/G cathode achieves a high-voltage platform (1.50 V) and is stable over 2000 cycles at 5 A g.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cc00765hDOI Listing

Publication Analysis

Top Keywords

two-dimensional amorphous
8
amorphous vopo/graphene
8
vopo/graphene heterostructure
4
heterostructure high-voltage
4
high-voltage aqueous
4
aqueous zn-ion
4
zn-ion batteries
4
batteries novel
4
novel two-dimensional
4
vopo/graphene a-vop/g
4

Similar Publications

Pressure-Driven Structural and Optoelectronic Tuning of Cl-Substituted 2D Lead Halide Perovskite (ClPMA)PbI.

J Phys Chem Lett

September 2025

Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.

View Article and Find Full Text PDF

The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.

View Article and Find Full Text PDF

Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells.

Nanomicro Lett

September 2025

College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.

The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

Unraveling boron-organic template interactions in [B, Al]-ZSM-5 zeolite using solid-state NMR spectroscopy.

Magn Reson Lett

May 2025

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.

Organic structure directing agents (OSDAs), such as tetrapropylammonium (TPA) cations, serve as crucial templates for the formation of zeolite frameworks. These organic molecules interact with inorganic species, guiding the assembly of the zeolite structure. In this study, we investigate the complex interplay between boron species and TPA cations during the crystallization of [B, Al]-ZSM-5 zeolites.

View Article and Find Full Text PDF