98%
921
2 minutes
20
The discovery of two-dimensional (2D) magnetic materials ushers in the engineering of future magnetoelectric nanodevices and spintronics, however, it is limited by the lack of a material platform with simultaneously large magnetic anisotropy and high transition temperature. Using a recently synthesized CrSemonolayer as a demonstration, the impact on magnetism and electronics is studied via first-principles calculations by functionalizing the monolayer with electron-donating and electron-withdrawing groups namely NHand NO. The magnetic ground state of the CrSechanges from the stripe antiferromagnetic to the ferromagnetic state after functionalization. The transition temperature of CrSe-NOand CrSe-NHenhances to 105 and 70 K, respectively, due to the expansion of the CrSesuperlattice. Besides, the magnetic anisotropy energy (MAE) of the CrSe-NOincreases to 1.12 meV/Cr along the in-plane direction due to the electron-withdrawing effect of the NOgroup. Oppositely, the electron-donating effect will decrease the MAE. Moreover, robust out-of-plane electric polarization is induced into the functionalized CrSemonolayer, relying on the semiconducting nature and asymmetric geometry along thedirection. These findings demonstrate the critical role of functional groups in regulating the magnetic and electronic properties of 2D multiferroic structures, providing a general approach for controllable 2D spintronic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/adc77b | DOI Listing |
J Phys Chem C Nanomater Interfaces
September 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, 46100 Burjassot, Valencia Spain.
The effects of pressure on the crystal structure of scheelite-type perrhenates were studied using synchrotron powder X-ray diffraction and density-functional theory. At ambient conditions, the studied materials AgReO, KReO, and RbReO, exhibit a tetragonal scheelite-type crystal structure described by space group 4/. Under compression, a transition from scheelite-to-M'-fergusonite (space group 2/) was observed at 1.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemical Engineering and Green Technology, Institute of Chemical Technology (ICT) Mumbai Maharashtra 400019 India
The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
Topochemical reduction of the n = 2 Ruddlesden-Popper oxide, LaSrCoRuO, yields LaSrCoRuO, a phase containing (Co/Ru)O squares which share corners to form 1D infinite double-chains. In contrast, fluorination of LaSrCoRuO yields the oxyfluoride LaSrCoRuOF, which can then be reduced to form LaSrCoRuOF. This reduced oxyfluoride is almost isoelectronic with LaSrCoRuO, but LaSrCoRuOF has a crystal structure in which the (Co/Ru)O squares are connected into 2D infinite sheets.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, China; Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi, 830052, China. Electronic address:
Drought is one of the most destructive natural disasters globally. Understanding its propagation mechanisms and the causal relationships among different drought types is crucial for effective monitoring and mitigation. Using meteorological (SPI), hydrological (SRI), and agricultural (SSMI) drought indices from 1983 to 2023 in Xinjiang, this study employs the Convergent Cross Mapping (CCM) method to systematically quantify nonlinear causal relationships among the three drought types, revealing their temporal lag characteristics, spatial heterogeneity, and multiscale dynamics.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:
Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.
View Article and Find Full Text PDF