Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To functionally evaluate novel human sequence-derived candidate genes and variants for unsolved ocular congenital cranial dysinnervation disorders (oCCDDs).

Methods: Through exome and genome sequencing of a genetically unsolved human oCCDD cohort, we previously reported the identification of variants in many candidate genes. Here, we describe a parallel study that prioritized a subset of these genes (43 human genes, 57 zebrafish genes) using a G0 CRISPR/Cas9-based knockout assay in zebrafish and generated F2 germline mutants for 17. We tested the functionality of variants of uncertain significance in known and novel candidate transcription factor-encoding genes through protein binding microarrays.

Results: We first demonstrated the feasibility of the G0 screen by targeting known oCCDD genes phox2a and mafba. Approximately 70% to 90% of gene-targeted G0 zebrafish embryos recapitulated germline homozygous null-equivalent phenotypes. Using this approach, we then identified three novel candidate oCCDD genes (SEMA3F, OLIG2, and FRMD4B) with putative contributions to human and zebrafish cranial motor development. In addition, protein binding microarrays demonstrated reduced or abolished DNA binding of human variants of uncertain significance in known and novel sequence-derived transcription factors PHOX2A (p.(Trp137Cys)), MAFB (p.(Glu223Lys)), and OLIG2 (p.(Arg156Leu)).

Conclusions: This study nominates three strong novel candidate oCCDD genes (SEMA3F, OLIG2, and FRMD4B) and supports the functionality and putative pathogenicity of transcription factor candidate variants PHOX2A p.(Trp137Cys), MAFB p.(Glu223Lys), and OLIG2 p.(Arg156Leu). Our findings support that G0 loss-of-function screening in zebrafish can be coupled with human sequence analysis and protein binding microarrays to aid in prioritizing oCCDD candidate genes/variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956743PMC
http://dx.doi.org/10.1167/iovs.66.3.62DOI Listing

Publication Analysis

Top Keywords

protein binding
16
binding microarrays
12
novel candidate
12
occdd genes
12
genes
9
ocular congenital
8
congenital cranial
8
cranial motor
8
candidate genes
8
variants uncertain
8

Similar Publications

A pediatric-onset case of chronic kidney disease caused by a novel sporadic variant and literature review.

Turk J Pediatr

September 2025

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.

Background: The α-actinin-4 (ACTN4) gene encodes an actin-binding protein, which plays a crucial role in maintaining the structure and function of podocytes. Previous studies have confirmed that ACTN4 mutations can lead to focal segmental glomerulosclerosis-1 (FSGS1), a rare disease primarily manifesting in adolescence or adulthood, characterized by mild to moderate proteinuria, with some cases progressing slowly to end-stage renal disease.

Case Presentation: We report a 12.

View Article and Find Full Text PDF

Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).

View Article and Find Full Text PDF

The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.

View Article and Find Full Text PDF

Premature infants are at high risk for brain injuries such as intraventricular hemorrhage and periventricular white matter injury. This study applies omics technology to analyze urinary protein expression, aiming to clarify preterm brain injury mechanisms and identify therapeutic targets. Urine samples were collected from 29 very preterm infants (VPI) without brain injury and 11 with moderate/severe injury at eight time points: Days 1, 2, 3, 4, 6, 8, 28, and term-equivalent age (TEA).

View Article and Find Full Text PDF

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF